
MEASURING INTRA- AND INTER-OBSERVER AGREEMENT IN IDENTIFYING AND
LOCALIZING STRUCTURES IN MEDICAL IMAGES

Mehul P. Sampat1 , Zhou Wang2 , Mia K. Markey1 , Gary J. Whitman3 , Tanya W. Stephens3 , Alan C. Bovik1

1The University of Texas at Austin, Austin, TX 78712, USA
2The University of Texas at Arlington, Arlington TX 76019, USA

3The University of Texas M. D. Anderson Cancer Center, Houston,TX 77030, USA

ABSTRACT

Inter- and intra-observer variability exists in any measure-
ments made on medical images. There are two sources of
variability. The first occurs when the observers identify and
localize the object of interest, and the second happens when
the observers make appropriate measurement on the object
of interest. A number of statistical methods are available
to quantify the degree of agreement between measurements
made by different observers. However, little has been done to
develop metrics for quantifying the variability in identifying
and localizing the objects of interest prior to measurement. In
this paper, we propose to use the complex wavelet structural
similarity index (CW-SSIM) method to measure the variabil-
ity in identifying and localizing structures on images. Per-
formance comparisons using simulated images as well as real
mammography images demonstrate the effectiveness and ro-
bustness of the CW-SSIM method.

1. INTRODUCTION

Detecting spiculated masses is critical for early detection
of breast cancer, but it is challenging because of the variable
appearance of these lesions. Our approach to computer-aided
detection is evidence-based,i.e., we use the physical prop-
erties of spiculated masses to set the parameters of the de-
tection algorithm [1]. To the best of our knowledge no sys-
tematic study has been reported on the statistics of the phys-
ical parameters of these lesions. Thus, we are conducting
studies in which experienced radiologists measure physical
properties of spiculated masses, e.g., the length and widthof
spicules [2].

Inter- and intra-observer variability exists in any measure-
ments on medical images. There are two important sources of
observer variability in measurements of structures on medical
images. Firstly, observers have to identify and localize the
object of interest and secondly, they have to make the appro-
priate measurement on the object of interest. Several methods
(e.g., Intra-class correlation (ICC), Bland-Altman method) are
available for making statistical comparisons of observer mea-
surements. While these methods have strong theoretical foun-

dations and can provide an evaluation of the inter- and intra-
observer agreement of measurements made by multiple in-
dividuals, they do not account for observer variability in the
identification and localization of the objects under study.

To appreciate this issue, consider the following example.
In our study, two radiologists (GJW, TWS) measured the prop-
erties of spiculated masses. GJW repeated the measurements
after an interval of one week. Figure 1(a) shows the trac-
ings made by two radiologists. Similarly, Figure 1(b) shows
the two sets of tracings made by the same radiologist on two
different occasions. Intuitively, one would expect a reader
to agree more with himself in the task of identifying and lo-
calizing the spicules than with another individual. By visual
inspection, we can see that the intra-observer agreement (Fig-
ure 1(a)) is greater than the inter-observer agreement (Figure
1(b)). However, a visual inspection of the overlay of tracings
only provides a subjective, qualitative assessment of the ob-
server agreement.

This work aims to develop automatic algorithms that can
provideobjective andquantitative evaluations of the observer
variability in object identification and localization. A number
of related metrics have been proposed previously, but were
mainly devoted to image segmentations. Two of the most
widely used metrics are the Dice coefficient [3] and the Jac-
card coefficient [4]. For our purpose, one common problem
with these approaches is that they are sensitive to small spatial
translations and rotations. This is an undesirable property be-
cause when people are asked to trace or make measurements
of linear structures in medical images it is very likely thatthe
tracings in the two (or more) evaluations will be slightly mis-
aligned, even though these tracings maybe intended to repre-
sent the same structure. The goal of this study is to develop
new metrics that can effectively measure observer variability
without being unduly sensitive to very small perturbations.
In particular, we propose to use the complex wavelet struc-
tural similarity (CW-SSIM) index, which was originally pro-
posed for general-purpose image quality assessment and pat-
tern recognition [5]. We believe it is a good candidate for our
purpose because it provides a measure of structural similarity
between images and is robust to small geometric distortions.
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2. METRICS

2.1. Dice similarity coefficient

The Dice similarity coefficient (DSC) is a simple and intu-
itive metric [3]. The DSC was selected for this study because
it is commonly used in medical imaging studies to quantify
the degree of overlap between two segmented objects, e.g.,
[6,7]. LetSeg1 andSeg2 represent two binary segmentations
of an object made by two experts. A pixel that belongs to the
segmented object is labeled one and zero otherwise. Then the
DSC (DSC ∈ [0,1]) is defined as follows:

DSC = 2 × [n(Seg1 ∩ Seg2)] / [n(Seg1) + n(Seg2)]
(1)

wheren(Seg1 ∩ Seg2) denotes the number of pixels that
are non-zero in both images. This can viewed as a mea-
sure of overlap between the two segmentations.n(Seg1) and
n(Seg2) represent the number of non-zero pixels in images
Seg1 andSeg2 respectively. Thus, for example if the two
segmentations overlap completely then the DSC = 1 and DSC
= 0 if there is no overlap. It is generally accepted that a DSC
value of greater that 0.7 denotes good agreement [7].

2.2. Complex Wavelet - SSIM

Recently, Wanget al. proposed the structural similarity (SSIM)
index for the prediction of human preferences in evaluating
image quality [5, 8]. The underlying idea of this approach
is that the human visual system (HVS) is highly adapted to
extract structural information from the visual scene and thus
a measure of structural similarity should provide a good es-
timate of the perceived image quality. It has been demon-
strated that the SSIM index is successful in predicting the
quality of images degraded with a wide variety of distortion
types and levels. In [5], this approach was extended to the
complex wavelet domain, and the resulting complex wavelet
SSIM (CW-SSIM) index has proven to be more robust than
the baseline SSIM index for geometric image distortions. The
CW-SSIM method uses the phase information of the coeffi-
cients in the complex wavelet domain. It is based on the be-
lief that the structural information of image features is mostly
contained in the relative phase patterns of wavelet coefficients
[5]. To compute the CW-SSIM metric for two images, we first
compute the complex wavelet transform of those images. Let
cx = {cx,i|i = 1, ..., N} andcy = {cy,i|i = 1, ..., N} be
the two sets of coefficients extracted at the same spatial lo-
cation in the same wavelet subbands of the two images being
compared, respectively. The CW-SSIM metric is defined as:

S̃(cx, cy) =
2 |

∑N

i=1
cx,i c∗y,i| + K

∑N

i=1
|cx,i|2 +

∑N

i=1
|cy,i|2 + K

(2)

Herec∗ denotes the complex conjugate ofc andK is a small
positive constant. The CW-SSIM index ranges from a value of

(a) (b)

Fig. 1. The measurements made by GJW and TWS which are
overlaid on the original image. Figure 1(a) shows the two set
of measurements made by the radiologists GJW. The second
set of measurements was made after an interval of one week.
Whereas, Fig. 1(b) shows the measurements made by the two
radiologists.

0 to 1, where 1 denotes perfect similarity between two images.

3. METHODS

3.1. Data Description

Two sets of data were used to compare the DSC and CW-
SSIM metrics. The metrics were compared on a set of sim-
ulated images and images of measurements made by experi-
enced radiologists. The first set consisted of simulated setof
binary images. To generate this set, a binary image was cre-
ated (Fig.2(a)) and this was then rotated and translated by dif-
ferent amounts to generate the simulated data-set. The origi-
nal image was rotated from 0.1 to 2 degrees in increments of
0.1 degrees. Note that since the amount of rotation that was
applied was very small, the linear segments are very close to
each other. These images model, the case when two readers
measure linear structures on images and although they maybe
measuring the same structure their measurements are off by a
few pixels. The original image was also translated by 0 to 4
pixels.

The second of images for this study were obtained from
the Digital Database for Screening Mammography (DDSM)
[9]. The DDSM is the largest publicly available dataset of
digitized mammograms and a set of 12 images containing a
single lesion each were randomly selected from those scanned
with a single digitizer. The radiologists (GJW and TWS)
marked the structures of interest on the images and measured
the lesion properties. To compute an estimate of the intra-
observer agreement, GJW repeated the process. The analysis
was conducted on regions-of-interest (ROIs) using the ROI
Manager plugin of NIH ImageJ. Figures 3(a) and 3(b) show
the observer tracings along the length of spicules. The bi-
nary images were created by assigning a value of one to the
pixels marked by the radiologists and zero otherwise. To im-
plement the CW-SSIM index for the comparison of images,
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Fig. 2. In Fig 2(a) the original simulated test image is shown in red. The original image was rotated from 0.1 to 2 degrees in
increments of 0.1 degrees. The image that was obtained afterrotation by 2 degrees is shown in green in Fig. 2(a). Similarly,
the original image was also translated by different distances. The original image was compared to each of the rotated images
and translated and for each pair of images the DSC and the CW-SSIM metrics were computed. Figures 2(b) and 2(c) show the
effect of rotation and translation on the two metrics. The DSC is sensitive to small rotations and spatial translations,whereas
the CW-SSIM metric is robust to these transformations.

we first decompose the images using a complex version of a
4-scale, 8-orientation steerable pyramid decomposition [10].
The CW-SSIM indices are then computed locally using a slid-
ing 7x7 window.

4. RESULTS

For the simulated data, the original image was compared to
each of the rotated and translated images and the DSC and
the CW-SSIM metrics were computed. The effect of very
small rotations and translations on the two metrics is shown
in Figs. 2(b) and 2(c) respectively. We see that while DSC
is sensitive to small rotations and translations, the CW-SSIM
metric is robust to these transformations. Table 1 shows the
values obtained for the DSC and CW-SSIM metrics for each
of the mammography images. By visual inspection, we can
see that the intra-observer agreement is more than the inter-
observer agreement, which is intuitive since one would expect
a reader to agree more with himself than with another indi-
vidual. However, although one can see considerable agree-
ment in the spicules outlined by the two radiologists (Figs.
1 and 3) the DSC metric fail to capture this fact and very
low values are obtained for each pair of images. (Note that
as mentioned earlier a DSC value of greater than 0.7 is con-
sidered to denote good agreement). In contrast, we see that
the CW-SSIM values are much higher and agree much better
with expectations than the DSC values. Secondly, they further
agree with expectations, as the CW-SSIM values are much
greater for intra-observer agreement than the corresponding
inter-observer agreement values for 10 out of the 12 pairs of
images.

5. DISCUSSION

In this paper, we have presented the use of the CW-SSIM to
quantify the intra- and inter-observer agreement in the local-

ization of structures in medical images. Testing on a simu-
lated test image showed that the CW-SSIM metric is robust to
rotations and translations whereas the popular DSC metric is
quite susceptible to these transformations. Recently, Warfield
et al. [11] proposed the STAPLE algorithm to simultaneously
obtain a robust estimate of the true segmentation boundary
and to compare the accuracy of various segmentation gener-
ators. It is difficult to compare the CW-SSIM and STAPLE
algorithms because they were designed for different applica-
tions. As the STAPLE method was designed to determine
the accuracy of segmentation, it penalizes segmentations that
are off by even a few pixels. In comparison, if the goal is to
trace and measure properties of linear structures (e.g.spicules,
blood vessels) then it is highly likely that the measurements
may not overlap completely and that a shift of a few pixels
should not be penalized and CW-SSIM is ideal for this situa-
tion.

It is encouraging to observe that the CW-SSIM metric ef-
fectively capture trends that are expected based on visual in-
spection of the mammography images analyzed in this study.
Notably, the within-observer agreement was consistently rated
as higher than the between-observer agreement. Statisticsfor
evaluating measurement agreement (e.g., ICC) can be inter-
preted in a task-independent manner to a large extent. For
example, an ICC value of 0.7 is typically taken to indicate
adequate agreement for any measurement task. However, it
is more difficult to specify a general-cutoff on measures of
agreement in structure localization in images such as the CW-
SSIM metric. While some efforts have been made to define
general cutoffs for measure such as DICE, it maybe be that
these metrics will need to be interpreted in a context depen-
dent manner.



(a) (b) TWS’s First set of Measurement (c) GJW’s Second set of Measurement

Fig. 3. This figure shows the measurements made by GJW and TWS for the spicule length only. Figures 3(a) and 3(b) show
GJW’s and TWS’s first set of measurement respectively. Figure 3(c) shows GJW’s second set of measurements.
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Image DSC DSC CW-SSIM CW-SSIM
No. (Intra-Obs) (Inter-Obs) (Intra-Obs) (Inter-Obs)
1 0.02 0.03 0.46 0.41
2 0.09 0.03 0.53 0.51
3 0.04 0.02 0.52 0.51
4 0.03 0.05 0.39 0.47
5 0.02 0.05 0.38 0.37
6 0.06 0.01 0.49 0.46
7 0.02 0.03 0.47 0.48
8 0.09 0.04 0.59 0.50
9 0.06 0.01 0.51 0.42
10 0.02 0.01 0.37 0.35
11 0.01 0.02 0.52 0.44
12 0.06 0.02 0.60 0.44

Table 1. Results of the intra- and inter-observer agreement for
the CW-SSIM and the DSC metrics. The DSC (metric fails to
quantify the intra- and inter-observer agreement for each pair
of images. (A DSC value of greater than 0.7 is considered to
denote good agreement). In contrast, for 10 of the 12 images
the CW-SSIM metrics show that the intra-observer agreement
is greater than the inter-observer agreement.




