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ABSTRACT dations and can provide an evaluation of the inter- and-intra
Inter- and intra-observer variability exists in any measur o_b§erver agreement of measurements made t.)y _mult_iple in-
o dividuals, they do not account for observer variability lie t
ments made on medical images. There are two sources QJ‘ e o )
- , . ) identification and localization of the objects under study.
variability. The first occurs when the observers identifg an
localize the object of interest, and the second happens when To appreciate this issue, consider the following example.
the observers make appropriate measurement on the objdotour study, two radiologists (GJW, TWS) measured the prop-
of interest. A number of statistical methods are availableerties of spiculated masses. GJW repeated the measurements
to quantify the degree of agreement between measuremerafier an interval of one week. Figure 1(a) shows the trac-
made by different observers. However, little has been done tings made by two radiologists. Similarly, Figure 1(b) shows
develop metrics for quantifying the variability in idenfifig ~ the two sets of tracings made by the same radiologist on two
and localizing the objects of interest prior to measuremient different occasions. Intuitively, one would expect a reade
this paper, we propose to use the complex wavelet structuréh agree more with himself in the task of identifying and lo-
similarity index (CW-SSIM) method to measure the variabil-calizing the spicules than with another individual. By \dku
ity in identifying and localizing structures on images. Per inspection, we can see that the intra-observer agreemignt (F
formance comparisons using simulated images as well as reaile 1(a)) is greater than the inter-observer agreementi(&ig
mammography images demonstrate the effectiveness and rbf)). However, a visual inspection of the overlay of trasin
bustness of the CW-SSIM method. only provides a subjective, qualitative assessment of e o
server agreement.

1. INTRODUCTION This work aims to develop automatic algorithms that can
provideobjective andquantitative evaluations of the observer
Detecting spiculated masses is critical for early detectio variability in object identification and localization. A mber
of breast cancer, but it is challenging because of the ariab of related metrics have been proposed previously, but were
appearance of these lesions. Our approach to computet-aidmainly devoted to image segmentations. Two of the most
detection is evidence-baseide.,, we use the physical prop- widely used metrics are the Dice coefficient [3] and the Jac-
erties of spiculated masses to set the parameters of the deard coefficient [4]. For our purpose, one common problem
tection algorithm [1]. To the best of our knowledge no sys-with these approaches is that they are sensitive to smaiaspa
tematic study has been reported on the statistics of the-phyanslations and rotations. This is an undesirable pryert
ical parameters of these lesions. Thus, we are conductingause when people are asked to trace or make measurements
studies in which experienced radiologists measure phlysicaf linear structures in medical images it is very likely thiz
properties of spiculated masses, e.g., the length and wfdth tracings in the two (or more) evaluations will be slightlysmi
spicules [2]. aligned, even though these tracings maybe intended to-repre
Inter- and intra-observer variability exists in any measur sent the same structure. The goal of this study is to develop
ments on medical images. There are two important sources akw metrics that can effectively measure observer vaitgbil
observer variability in measurements of structures on oa¢di without being unduly sensitive to very small perturbations
images. Firstly, observers have to identify and localize th In particular, we propose to use the complex wavelet struc-
object of interest and secondly, they have to make the appradral similarity (CW-SSIM) index, which was originally pro
priate measurement on the object of interest. Several dethoposed for general-purpose image quality assessment and pat
(e.g., Intra-class correlation (ICC), Bland-Altman methare  tern recognition [5]. We believe it is a good candidate for ou
available for making statistical comparisons of observeam purpose because it provides a measure of structural sityilar
surements. While these methods have strong theoretical fouhetween images and is robust to small geometric distortions
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2. METRICS

2.1. Dice similarity coefficient

The Dice similarity coefficientDSC) is a simple and intu
itive metric [3]. The DSC was selected for this study bece
it is commonly used in medical imaging studies to quan
the degree of overlap between two segmented objects,
[6,7]. LetSegl andSeg2 represent two binary segmentatic
of an object made by two experts. A pixel that belongs to
segmented object is labeled one and zero otherwise. The: uic @) ()
DSC (DSC € [0,1)) is defined as follows:

Fig. 1. The measurements made by GJW and TWS which are
DSC =2 x [n(Segl N Seg2)]/[n(Segl) + n(Seg2)] overlaid on the original image. Figure 1(a) shows the two set
(1) of measurements made by the radiologists GJW. The second
wheren(Segl N Seg2) denotes the number of pixels that set of measurements was made after an interval of one week.
are non-zero in both images. This can viewed as a mea¥hereas, Fig. 1(b) shows the measurements made by the two
sure of overlap between the two segmentatiori$egl) and  radiologists.
n(Seg2) represent the number of non-zero pixels in images
Segl and Seg2 respectively. Thus, for example if the two o )
segmentations overlap completely then the DSC = 1 and pseto 1, where 1 denotes perfect similarity between two images
= 0 if there is no overlap. It is generally accepted that a DSC
value of greater that 0.7 denotes good agreement [7]. 3. METHODS

3.1. Data Description

2.2. Complex Wavelet - SSIM
Two sets of data were used to compare the DSC and CW-

Recently, Wangt al. proposed the structural similarity (SSIM) SSIM metrics. The metrics were compared on a set of sim-
index for the prediction of human preferences in evaluatingilated images and images of measurements made by experi-
image quality [5, 8]. The underlying idea of this approachenced radiologists. The first set consisted of simulatedfset
is that the human visual system (HVS) is highly adapted tdinary images. To generate this set, a binary image was cre-
extract structural information from the visual scene angsth ated (Fig.2(a)) and this was then rotated and translatedfby d
a measure of structural similarity should provide a good esferent amounts to generate the simulated data-set. Thie orig
timate of the perceived image quality. It has been demonnal image was rotated from 0.1 to 2 degrees in increments of
strated that the SSIM index is successful in predicting th®.1 degrees. Note that since the amount of rotation that was
quality of images degraded with a wide variety of distortionapplied was very small, the linear segments are very close to
types and levels. In [5], this approach was extended to theach other. These images model, the case when two readers
complex wavelet domain, and the resulting complex waveleineasure linear structures on images and although they maybe
SSIM (CW-SSIM) index has proven to be more robust tharmeasuring the same structure their measurements are off by a
the baseline SSIM index for geometric image distortionse Th few pixels. The original image was also translated by 0 to 4
CW-SSIM method uses the phase information of the coeffipixels.
cients in the complex wavelet domain. It is based on the be- The second of images for this study were obtained from
lief that the structural information of image features isstyp  the Digital Database for Screening Mammography (DDSM)
contained in the relative phase patterns of wavelet coeffisi [9]. The DDSM is the largest publicly available dataset of
[5]. To compute the CW-SSIM metric for two images, we first digitized mammograms and a set of 12 images containing a
compute the complex wavelet transform of those images. Lefingle lesion each were randomly selected from those sdanne
c: = {czili = 1,..,N}ande, = {¢,li = 1,..., N} be with a single digitizer. The radiologists (GJW and TWS)
the two sets of coefficients extracted at the same spatial lgnarked the structures of interest on the images and measured
cation in the same wavelet subbands of the two images beinge lesion properties. To compute an estimate of the intra-
compared, respectively. The CW-SSIM metric is defined as:observer agreement, GJW repeated the process. The analysis
was conducted on regions-of-interest (ROIs) using the ROI
G 2| Zilil Cai Cy il + K Manager plugin of NIH ImageJ. Figures 3(a) and 3(b) show
S(cq, Cy) i N - . .
SN w2+ XN leyl? + K the observer tracings along the length of spicules. The bi-
nary images were created by assigning a value of one to the
Herec* denotes the complex conjugatecdind K is a small  pixels marked by the radiologists and zero otherwise. To im-
positive constant. The CW-SSIM index ranges from a value oplement the CW-SSIM index for the comparison of images,
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Fig. 2. In Fig 2(a) the original simulated test image is shown in r€de original image was rotated from 0.1 to 2 degrees in
increments of 0.1 degrees. The image that was obtainedraftgion by 2 degrees is shown in green in Fig. 2(a). Sinyiarl
the original image was also translated by different distand@he original image was compared to each of the rotategesna
and translated and for each pair of images the DSC and the EN¥-Bietrics were computed. Figures 2(b) and 2(c) show the
effect of rotation and translation on the two metrics. ThelDS§ sensitive to small rotations and spatial translatiarigreas
the CW-SSIM metric is robust to these transformations.

we first decompose the images using a complex version of iaation of structures in medical images. Testing on a simu-
4-scale, 8-orientation steerable pyramid decompositl®j.[ lated testimage showed that the CW-SSIM metric is robust to
The CW-SSIM indices are then computed locally using a slidfotations and translations whereas the popular DSC metric i
ing 7x7 window. quite susceptible to these transformations. Recentlyfiglgr
et al. [11] proposed the STAPLE algorithm to simultaneously
obtain a robust estimate of the true segmentation boundary
For the simulated data, the original image was compared tand to compare the accuracy of various segmentation gener-
each of the rotated and translated images and the DSC aatbrs. It is difficult to compare the CW-SSIM and STAPLE
the CW-SSIM metrics were computed. The effect of veryalgorithms because they were designed for different agplic
small rotations and translations on the two metrics is showtions. As the STAPLE method was designed to determine
in Figs. 2(b) and 2(c) respectively. We see that while DSQhe accuracy of segmentation, it penalizes segmentatiats t
is sensitive to small rotations and translations, the CWVSS are off by even a few pixels. In comparison, if the goal is to
metric is robust to these transformations. Table 1 shows thigace and measure properties of linear structures (ecglegi
values obtained for the DSC and CW-SSIM metrics for eaclplood vessels) then it is highly likely that the measuremment
of the mammography images. By visual inspection, we camay not overlap completely and that a shift of a few pixels
see that the intra-observer agreement is more than the inteshould not be penalized and CW-SSIM is ideal for this situa-
observer agreement, which is intuitive since one would expe tion.
a reader to agree more with himself than with another indi- It is encouraging to observe that the CW-SSIM metric ef-
vidual. However, although one can see considerable agreéectively capture trends that are expected based on vigual i
ment in the spicules outlined by the two radiologists (Figsspection of the mammography images analyzed in this study.
1 and 3) the DSC metric fail to capture this fact and veryNotably, the within-observer agreement was consisteatsd
low values are obtained for each pair of images. (Note thaas higher than the between-observer agreement. Stafistics
as mentioned earlier a DSC value of greater than 0.7 is cor@valuating measurement agreement (e.g., ICC) can be inter-
sidered to denote good agreement). In contrast, we see thaeted in a task-independent manner to a large extent. For
the CW-SSIM values are much higher and agree much bettexample, an ICC value of 0.7 is typically taken to indicate
with expectations than the DSC values. Secondly, theydurth adequate agreement for any measurement task. However, it
agree with expectations, as the CW-SSIM values are mucdls more difficult to specify a general-cutoff on measures of
greater for intra-observer agreement than the correspgndi agreement in structure localization in images such as the CW
inter-observer agreement values for 10 out of the 12 pairs d&SIM metric. While some efforts have been made to define
images. general cutoffs for measure such as DICE, it maybe be that
these metrics will need to be interpreted in a context depen-
dent manner.

4. RESULTS

5. DISCUSSION

In this paper, we have presented the use of the CW-SSIM to
quantify the intra- and inter-observer agreement in thaltoc



(a) (b) TWS’s First set of Measurement (c) GJW's Second set of Measurement

Fig. 3. This figure shows the measurements made by GJW and TWS fopithdeslength only. Figures 3(a) and 3(b) show
GJW's and TWS's first set of measurement respectively. Fig(aesBiows GJW'’s second set of measurements.
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