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ABSTRACT

Divisive normalization has been recognized as a successful approach
to model the perceptual sensitivity of biological vision. It also pro-
vides a useful image representation that is well-matched to the sta-
tistical properties of natural images. Here we propose a reduced-
reference image quality assessment method in the divisive normal-
ization transform domain, where the quality of an image is evalu-
ated based on a set of reduced-reference features extracted from a
divisive normalization representation of the image. The proposed
method is general-purpose, in the sense that no assumption is made
about the types of distortions occurred in the image being evaluated.
The proposed method is trained and tested using the LIVE database
and demonstrates good performance for a wide range of distortions.

Index Terms— image quality assessment, perceptual image
representation, statistical image modeling, divisive normalization

1. INTRODUCTION

Most existing image quality assessment (IQA) methods require full
access to the original reference image that is assumed to have perfect
quality. Reduced-reference (RR) IQA methods predict the quality
degradation of an image with only partial information about the ref-
erence image, in the form of a set of RR features [1]. RRIQA meth-
ods provide a practically useful and convenient tool for real-time
visual information communication and networking systems, where
they can be used to track image quality degradations and control the
streaming resources on the fly.

The major challenge in the design of RRIQA algorithms is to
find appropriate RR features that 1) provide an efficient representa-
tion of the reference image; 2) are sensitive to various image distor-
tions; and 3) are relevant to the perceptual sensitivity of the human
visual system. In previous work, statistical image models have been
employed for the purpose of RRIQA. In [2], a generalized Gaussian
density function is used to model the marginal statistics of the linear
coefficients in a wavelet subband, and the parameters of the fitting
model are used as RR features. Although this method achieves no-
table success, it ignores the strong dependencies between the neigh-
boring wavelet coefficients.

In this paper, we propose a new method that is inspired by the
recent success of the divisive normalization transform as a perceptu-
ally and statistically motivated image representation [3]. It is widely
hypothesized in computational vision science that the purpose of
early visual sensory processing is to increase the statistical indepen-
dence between neuronal responses [4]. Linear decompositions can
only remove the first-order correlation, but do not reduce the higher
order statistical dependencies, such as the variance [5]. Recently,

a local gain-control divisive normalization model has emerged as a
powerful method to account for the neuronal responses in biological
visual systems [6]. Each coefficient of a linear transform is normal-
ized (divided) by the energy of a cluster of neighboring coefficients.
This nonlinear process has been shown to reduce the statistical de-
pendencies of the original linear representation [5] and produce ap-
proximately Gaussian marginal distributions [7]. It has also been
employed in real world image processing applications, including im-
age compression [8] and image contrast enhancement [3].

The strong perceptual and statistical relevance of divisive nor-
malization representation (as compared to linear decompositions)
motivated us to switch from the linear wavelet transform domain (as
in [2]) to a divisive normalization transform domain in the develop-
ment of our RRIQA method. Our experiments show that this results
in improved performance for image quality evaluation.

2. METHOD

2.1. Divisive Normalization Computation

A convenient approach to compute a divisive normalization repre-
sentation can be derived from the Gaussian scale mixtures (GSM)
model of wavelet coefficients [9]. A length-N random vector Y is a
GSM if it can be expressed as the product of two independent com-
ponents: Y

.
= zU , where U is a zero-mean Gaussian random vector

with covariance CU and z is called a mixing multiplier. Suppose that
the mixing density is pz(z), then the density of Y can be written as

pY (Y ) =

∫
1

[2π]
N
2 |z2CU |1/2

exp

(
−Y T C−1

U Y

2z2

)
pz(z)dz .

(1)
This GSM model has shown to be very useful to account for both
the marginal and joint statistics of wavelet coefficients [9], where
the vector Y is formed by clustering a set of neighboring wavelet
coefficients within a subband, or across neighboring subbands.

Note that when z is fixed, Y is simply a zero-mean Gaussian
vector with covariance z2CU . This motivates us to compute a nor-
malized representation by dividing the original wavelet coefficient
vector Y by an estimate of z computed from its neighboring coef-
ficients. The coefficient cluster Y is applied as a moving window
across a wavelet subband. At each step, only the center coefficient
yc of the vector Y is normalized and the new coefficient under the
divisive normalization representation becomes yc/ẑ, where ẑ is the
estimate of z. A convenient method to obtain ẑ is by a maximum
likelihood estimation [9] given by

ẑ = arg max
z
{log p(Y |z)}
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= arg min
z
{N log z + Y T C−1

U Y/2z2}

=

√
Y T C−1

U Y/N . (2)

The covariance matrix CU = E[UUT ] is estimated from the entire
wavelet subband.

2.2. Image Statistics in Divisive Normalization Representation

In Fig. 1, we compare the marginal distributions of an original
wavelet subband (computed from a steerable pyramid decomposi-
tion [10]) and the same subband after divisive normalization. In Fig.
1(c), the original wavelet coefficient histogram is compared with a
Gaussian shape with the same standard deviation. The significant
gaps between the two curves indicate that the original wavelet coef-
ficients are highly non-Gaussian. By contrast, the histogram of the
coefficients after divisive normalization can be very well fitted with
a Gaussian, as shown in Fig. 1(d).
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Fig. 1. (a) original wavelet coefficients; (b) normalized coefficients;
(c) histogram of original coefficients (solid curve) and a Gaussian
curve with the same variance (dashed curve); (d) histogram of nor-
malized coefficients (solid) and a Gaussian fitting (dashed).

In Fig. 2, we compare the conditional histograms of the coeffi-
cients extracted from two neighboring subbands (a parent band and
a child band). It can be observed in Fig. 2(a) that in the original
wavelet representation, the variance of a child coefficient is highly
dependent on the magnitude of its parent coefficient. By contrast, in
the divisive normalization representation, the histograms of the child
coefficients make little difference when conditioned on the magni-
tudes of the parent coefficients, as can be seen in Fig. 2(b). This
clearly demonstrates that the divisive normalization process reduces
the second-order dependencies between the transform coefficients.

Figure 3 demonstrates how image distortions change the statis-
tics of the coefficients in the divisive normalization transform do-
main. It is observed that the original near-Gaussian distribution
of these coefficients is sensitive to different types of image distor-
tions, but the way it changes varies with the distortion type. Proper
quantification of these changes is the key in the development of our
RRIQA algorithm.

2.3. Reduced-reference Image Quality Assessment

We propose a low data rate RRIQA algorithm, in which only a small
set of RR features are extracted from the reference image and are
employed in the quality evaluation of the distorted image. First, we
apply a wavelet transform to the reference image and compute the
divisive normalization transform representation for the coefficients,
as described in Section 2.1. We can then draw a histogram of the
coefficients at each subband. As being observed in Section 2.2, the
probability density function p(x) of the coefficients can be well ap-
proximated with a zero-mean Gaussian model:

pm(x) =
1√
2πσ

exp

(
− x2

2σ2

)
, (3)

which requires only one parameter σ to describe. Furthermore, to
account for the variations between the model and the true distribu-
tion, we compute the Kullback-Leibler distance (KLD) [11] between
pm(x) and p(x) as

d(pm||p) =

∫
pm(x) log

pm(x)

p(x)
dx (4)

and use it as an additional RR feature. This is computed for each
subband independently, resulting in 2 parameters (σ and d(pm||p))
for each subband.

In order to evaluate the quality of a distorted image, we apply
the same divisive normalization transform and obtain the histogram
of the transform coefficients at each subband. We can then estimate
the KLD between the probability density function q(x) of the co-
efficients computed from the distorted image and the model pm(x)
estimated from the reference image:

d(pm||q) =

∫
pm(x) log

pm(x)

q(x)
dx . (5)

Combining this with the additional RR feature d(pm||p), we obtain
an estimate of the KLD between p(x) and q(x):

d̂(p||q) = d(pm||q)− d(pm||p) =

∫
pm(x) log

p(x)

q(x)
dx . (6)

Another measure that we found useful for quality evaluation is the
difference between the standard deviations of the coefficients com-
puted from the original and distorted images, respectively:

dσ = |σ − σd| . (7)

Note that this does not increase the number of RR features because σ
is already acquired when fitting the Gaussian model of Eq. (3). We
define the distortion measure at a subband as a linear combination of
d̂(p||q) and dσ in the logarithmic domain:

Dband = α log(d̂(p||q)) + β log(dσ) = log
(
(d̂(p||q))α(dσ)β

)
,

(8)
where α and β and weighting parameters. In practice, to avoid the
instability when d̂(p||q) or dσ is close to zero, we compute

Dband = log

(
1 +

(d̂(p||q))α(dσ)β

D0

)
, (9)

where D0 is a positive constant. Finally, the overall distortion is
computed as the sum of the distortion measures of all subbands.
This distortion measure is always non-negative, and is zero when
the original and distorted images are exactly the same.
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Fig. 2. Conditional histograms between a parent and a child coefficients extracted from the original wavelet representation (a) and the
corresponding divisive normalization representation (b).
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Fig. 3. Histograms of divisive normalization transform coefficients under different image distortions. (a) original “Lena” image; (b) Gaussian
noise contaminated image; (c) Gaussain blurred image; (d) JPEG compressed image. Solid curves: histograms of normalized coefficients.
Dashed curves: the Gaussian model fitted to the histogram of the original image. Significant departures from the Gaussian model is observed
in the distorted images (b), (c) and (d).

3. IMPLEMENTATION AND VALIDATION

To implement the proposed algorithm, we decompose the image us-
ing a steerable pyramid [10] with 3 scales and 4 orientations. For
each subband, we apply divisive normalization using 13 neighboring
coefficients, including 9 from the same subband, 1 from the parent
band, and 3 from the same spatial location in the other orientation
bands at the same scale. Two RR features are used for each subband
(as described in Section 2.3), resulting in a total of 24 RR features
for a reference image.

We use the LIVE database [12] to test the proposed algorithm.
The database contains seven datasets of 982 subject-rated images
created from 29 original images with five types of distortions at

different distortion levels. The distortion types include JPEG com-
pression (2 sets), JPEG2000 compression (2 sets), white noise
contamination (1 set), Gaussian blur (1 set), and fast fading chan-
nel distortion of JPEG2000 compressed bitstream (1 set). There is
also a cross-comparison set that mixes images from all distortion
types, thus help align the subject scores across different datasets
(the alignment is rather crude, and therefore the cross-comparison
and all-data tests should only be regarded as useful references).
Three methods are used to evaluate how well the objective scores
predict the subjective scores: 1) Correlation coefficient between the
subjective/objecitve scores after a nonlinear mapping is computed
to evaluate prediction accuracy; 2) Spearman rank-order correlation
coefficient (ROCC) is calculated to evaluate prediction monotonic-

3



Table 1. Cross validation using the LIVE database. Std: standard deviation.
Dataset JP2(1) JP2(2) JPG(1) JPG(1) WN GBlur FF Cross All data

Mean ROCC 0.9516 0.9629 0.8224 0.8976 0.9553 0.9590 0.9450 0.8797 0.9278
Std of ROCC 1.58e-4 1.21e-4 5.45e-4 1.18e-3 7.30e-4 5.16e-4 5.69e-4 2.74e-3 1.22e-4

Table 2. Performance comparison of IQA methods using the LIVE database
Dataset JP2(1) JP2(2) JPG(1) JPG(1) WN GBlur FF Cross All data

Correlation Coefficient (prediction accuracy)
Proposed 0.9527 0.9685 0.8282 0.9592 0.9644 0.9567 0.9464 0.8921 0.9162

Wang et al. [2] 0.9353 0.9490 0.8452 0.9695 0.8889 0.8872 0.9175 0.7300 0.8226
PSNR 0.9337 0.8948 0.9015 0.9136 0.9866 0.7742 0.8811 0.8487 0.8709

Rank-Order Correlation Coefficient (prediction monotonicity)
Proposed 0.9518 0.9629 0.8222 0.8980 0.9554 0.9591 0.9451 0.8786 0.9279

Wang et al. [2] 0.9298 0.9470 0.8332 0.8908 0.8639 0.9145 0.9162 0.7174 0.8437
PSNR 0.9231 0.8816 0.8907 0.8077 0.9855 0.7729 0.8785 0.8562 0.8755

Outlier Ratio (prediction consistency)
Proposed 0.0115 0.0122 0.1034 0.0341 0.0000 0.0069 0.0207 0.5600 0.1079

Wang et al. [2] 0.0690 0.0366 0.1839 0.0341 0.1793 0.1172 0.0621 0.8000 0.2311
PSNR 0.0805 0.0976 0.092 0.1818 0.0000 0.2069 0.1517 0.7000 0.2373

ity; 3) Outlier ratio is used to evaluate prediction consistency, which
is defined as the percentage of predictions outside the range of ±2
standard deviations between subjective scores.

Before the proposed algorithm is applied, three model parame-
ters, α, β and D0, need to be learned from the data. To verify that
these parameters are not overtrained, a cross validation method is
employed. First, we randomly select 21 out of the 29 original im-
ages. We then use all the images created from these 21 images as the
training set and use a numerical optimization method to find the best
set of parameters. The images created from the remaining 8 original
images are used for testing. This process is repeated 50 times, with
random partitions of the training and testing sets. We then look at
the distribution of the test results, part of which are shown in Table
1. It can be observed that the variations of the ROCC values are
small throughout all the test sets. This implies strong robustness and
generalization capability of the learned model parameters.

To the best of our knowledge, the only other RRIQA algorithm
that is general-purpose (as opposed to distortion- or application-
specific) and has a comparably small RR data rate is the one pro-
posed in [2], which is included in our algorithm comparison. In
addition, we also include peak signal-to-noise-ratio (PSNR), which
is still the most widely used full-reference IQA measure. Although
such comparison is highly unfair to the proposed method and the
method in [2] (PSNR requires full access to the original image,
as opposed to the 24 scalar features in the proposed method), it
provides a useful indication of their relative performance. The
comparison results are shown in Table 2. It can be seen that the
proposed method produces the best performance in most cases, and
the improvement is significant in many cases.

4. CONCLUSION

We proposed an RRIQA algorithm using statistical features ex-
tracted from a divisive normalization-based image representation.
The simultaneous perceptual and statistical relevance of this new
representation leads to improved performance for image quality
assessment. The proposed algorithm has a relatively low data rate
for RR features. Furthermore, it does not make any assumption
about the image distortion types, thus has the potential to be used
for general-purpose in a wide range of applications.
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