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ABSTRACT
The structural similarity (SSIM) index has been shown to be a good
perceptual image quality predictor. In many real-world applica-
tions such as network visual communications, however, SSIM is
not applicable because its computation requires full access to the
original image. Here we propose a reduced-reference approach that
estimates SSIM with only partial information about the original im-
age. Specifically, we extract statistical features from a multi-scale,
multi-orientation divisive normalization transform and develop a dis-
tortion measure by following the philosophy analogous to that in the
construction of SSIM. We found an interesting linear relationship
between our reduced-reference SSIM estimate and full-reference
SSIM when the image distortion type is fixed. A regression-by-
discretization method is then applied to normalize our measure
between image distortion types. We use the LIVE database to test
the proposed distortion measure, which shows strong correlations
with both SSIM and subjective evaluations. We also demonstrate
how our reduced-reference features may be employed to partially
repair a distorted image.

Index Terms— reduced-reference image quality assessment,
structural similarity, natural image statistics, divisive normalization
transform, regression by discretization, image repairing

1. INTRODUCTION

Multimedia contents delivered over networks suffer from various
types of distortions on its way to the destination. It is highly desir-
able to measure the perceptual similarity of the received content with
the original. The structure similarity (SSIM) index [1] was shown to
correlate well with perceived image quality and has found a wide
variety of applications, ranging from image coding, restoration and
fusion, to watermarking and biometrics [2]. However, direct SSIM
evaluation is not possible in practical visual communication appli-
cations, because it is a full-reference (FR) measure that requires the
original image at the receiver [2]. On the other hand, the lack of
knowledge of natural scene statistics and the human visual system
(HVS) creates great challenge for no-reference image quality assess-
ment (NR-IQA), especially for the general-purpose case. Reduced-
reference (RR) IQA, a compromise between FR and NR, is designed
to employ only a set of RR features extracted from the reference im-
age for quality evaluation of the distorted image at the receiver [2].

To the best of our knowledge, only a few schemes have been
presented in the literature for general purpose RR-IQA. In [3], the
marginal distribution of wavelet subband coefficients is modeled us-
ing a generalized Gaussian density function, and the variations of
marginal distributions are used to quantify image distortion. This led
to an effective RR-IQA method with low RR data rate. This scheme
was further improved in [4] by making use of a divisive normal-
ization transform (DNT). An RR video SSIM metric was proposed

in [5] for quantifying visual degradations caused by channel trans-
mission error. It is based on local spatial statistical features and uses
distributed source coding techniques to reduce the required band-
width to transmit RR features, though the resulting RR data rate is
still much higher than those in [3] and [4].

In this paper, we propose a new approach for the design of low
data rate general-purpose RR-IQA method. Instead of directly con-
structing an RR algorithm to predict subjective quality evaluations,
we develop our method as an attempt to estimate SSIM. The benefits
of this approach are twofold. First, the successful design principle
in the construction of SSIM can be naturally incorporated into the
development of our algorithm. Second, when the algorithm design
involves a supervised machine learning stage, it is much easier to
obtain training data, because SSIM can be readily computed, as op-
posed to the expensive and time-consuming subjective tests. Our
experiments using the LIVE database [6] show that this is a useful
approach, as the resulting RR-SSIM estimator exhibits good perfor-
mance in predicting not only FR-SSIM, but also subjective scores.
Moreover, we also use a simple image deblurring example to show
that the RR features employed in our approach can be employed to
partially repair a distorted image.

2. RR SSIM ESTIMATION

The proposed RR-SSIM estimation algorithm starts from a feature
extraction process of the reference image based on a multi-scale
multi-orientation divisive normalization transform (DNT). Divisive
normalization was found to be a simple but effective mechanism to
account for many neuronal behaviors in biological perceptual sys-
tems [7]. In [7], a DNT is defined by using a Gaussian scale mixture
(GSM) model of image wavelet coefficients. A vector Y of length
N is a GSM if it can be represented as the product of two inde-
pendent components: Y =̇zU , where z is a scalar random variable
called mixing multiplier, and U is a zero-mean Gaussian distributed
random vector with covariance CU . It was found that the histogram
of normalized wavelet coefficient vector, ν = Y/ẑ, can be modeled
by a zero-mean Gaussian density function [7], where ẑ is a local
estimation of the multiplier z using a maximum-likelihood estima-
tor [7]:

ẑ =
√
Y TC−1

U Y/N. (1)

As a result, the DNT coefficient distribution of each subband is
characterized by a single parameter σ, the standard deviation of the
Gaussian distribution. This provides a very efficient summary of
the reference image. In addition to σ, the Kullback-Leibler diver-
gence (KLD) between model Gaussian distribution, pm(x), and the
true probability distribution of the DNT-domain coefficients, p(x),
denoted by d(pm||p) is extracted as the second feature for each sub-
band. The subband distortion of the distorted image can be evaluated
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by the KLD between the probability distribution of the original im-
age, p(x), and that of the distorted image, q(x):

d̂(p||q) = d(pm||q)− d(pm||p) , (2)

where d(pm||q) is the KLD between the model Gaussian distribution
and the distribution computed from the distorted image. As demon-
strated in [3, 4], different types of distortions affect the statistics of
the reference image in a different manner, but are all summarized in
Eq. (2) to a single distortion measure.

By assuming independence between subbands, the subband-
level distortion measure of Eq. (2) can be combined to provide an
overall distortion assessment of the whole image [4]

D = log

(
1 +

1

D0

K∑
k=1

∣∣∣d̂k(pk||qk)
∣∣∣) , (3)

where K is the total number of subbands, pk and qk are the proba-
bility distributions of the k-th subband of the reference and distorted
images, respectively, d̂k represents the KLD between pk and qk, and
D0 is a constant to control the scale of the distortion measure.
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Fig. 1. Equal-distortion contours with respect to the central reference
vectors. (a) MSE measure; (b) SSIM measure.

The limitation of the measure in Eq. (3) is that it does not take
into account the relationship (or structures) between the distortions
across different subbands. Such distortion structure is a critical issue
behind the philosophy of the SSIM approach [1], which attempts to
distinguish structural and non-structural distortions. Figure 1 pro-
vides a graphical explanation in the vector space of image com-
ponents, where the image components can be pixels, wavelet co-
efficients, or extracted features from the reference image. For the
purpose of illustration, two-dimensional diagrams are shown here.
However, the actual dimensions may be equal to the number of pix-
els or features being compared. In the graphs for both MSE and
SSIM measures, we use three vectors to represent three reference
images, and the contour around each vector represents the set of im-
ages that have the same level of distortion with respect to the ref-
erence. Unlike the MSE metric, SSIM is totally adaptive according
to the reference signal. In particular, if the distortion is consistent
with the underlying reference signal (the reference vector direction),
we call it a non-structural distortion, which is much less objectional
than structural distortions (for example, the distortions perpendicu-
lar to the reference vector direction). This is reflected in the shapes
of the equal-distortion contours. Here we make a first attempt to
extend this idea for RR IQA by applying it to the subband standard
deviation measures of the reference and distorted images. This is
intuitively sensible because in the case that the distorted image is a
globally contrast scaled (contrast reduction or enhancement) version

of the reference image, then the standard deviations of all subbands
should scale by the same factor, which is considered consistent non-
structural distortion and is less objectional than the case that the sub-
band standard deviations change in different ways.

Let σr and σd be the vectors containing the standard deviation
σ values of the DNT coefficients from each subband in the reference
and distorted images, respectively. We define a new RR distortion
measure as

Dn = g(σr,σd) log

(
1 +

1

D0

K∑
k=1

∣∣∣d̂k(pk||qk)
∣∣∣) , (4)

where the key feature is the function g(σr,σd) added in front of
Eq. (3). This function should serve the purpose of identifying and
distinguishing the consistent non-structural distortion directions in
the feature vector space of subband σ values, so as to scale the dis-
tortion measure D in a way that structural distortions are penal-
ized more than non-structural distortions. Motivated by the suc-
cessful normalized correlation formulation in SSIM [1], we define
g(σr,σd) as

g(σr,σd) =
|σr|2 + |σd|2 + C

2|σr · σd|+ C
, (5)

where σr · σd represents the dot product between the two vectors,
and the constant C is included to avoid instability when σr · σd is
close to 0. This function is lower-bounded by 1, when σr and σd

are fully correlated, or in other words, when their orientations in the
feature vector space are completely consistent. With the decrease of
correlation, g(σr,σd) increases, thus gives more penalty to incon-
sistent structural distortions.
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Fig. 2. Relationship between SSIM andDn for blur, JPEG compres-
sion, JPEG2000 compression, and noise contamination distortions.

Figure 2 shows the Dn results computed for 4 different distor-
tion types at different distortion levels, and compares them with the
corresponding SSIM values calculated for the distorted images. In-
terestingly, for each fixed distortion type, Dn exhibits a nearly per-
fect linear relationship with SSIM. We regard this as an outcome
of the similarity between their design principles, even though the
principle is applied to completely different domains of signal repre-
sentation. The clean linear relationship also helps us to design an



SSIM predictor based on Dn because the remaining job is just to es-
timate the normalization slope factor across distortion types. More
specifically, an RR-SSIM estimator can be written as

Ŝ = 1− αDn, (6)

where α is the slope factor that needs to be learned from training
images. In particular, we adopted a regression-by-discretization ap-
proach [8], which is a regression scheme that employs a classifier
on a copy of the data that has the class attribute discretized, and the
predicted value is the expected value of the mean class value for
each discretized interval. A decision tree classifier was built using
|σo − σd| and |kr − kd| as the attributes, where kr and kd are the
kurtosis values of the DNT coefficients computed from the original
and distorted images, respectively.

3. IMPLEMENTATION AND VALIDATION

To extract RR features, the reference image is first decomposed into
12 subbands using a three-scale four-orientation steerable pyramid
transform [9]. Division normalization is then applied using 13 neigh-
boring coefficients, including 9 spatial neighbors from the same sub-
band, 1 from parent subband, and 3 from the same spatial location
in the other orientation bands at the same scale. Three features, σr ,
kr and d(pm||p), are extracted for each subband, resulting in a to-
tal of 36 RR features for a reference image. These RR features are
used for SSIM estimation of the distorted image using the approach
described in Section 2.

A training process is needed to determine the slope factor α
based on the observed differences between subband standard devi-
ation and kurtosis. Our training data included 29 reference images
altered with 50 levels of distortions for five types of distortions, in-
cluding Gaussian Blur, JPEG2000 compression, JPEG compression,
fast fading channel distortion of JPEG2000 compressed bitstream
and white Gaussian noise. Decision trees were built using the open
source data mining tool WEKA [10].

The proposed scheme is tested using the LIVE database [6],
which contains seven data sets with a total of 779 distorted images.
Figure 3 shows the scatter plot, and Table 1 computes the mean abso-
lute error (MAE) and Pearson linear correlation coefficient (PLCC)
between FR SSIM and our RR SSIM estimate. It can be seen that the
proposed SSIM estimator achieves high prediction accuracy across
various types of distortions.

To further validate the proposed algorithm, we compare three
objective IQA algorithms, namely peak signal-to-noise-ratio (PSNR),
SSIM, and our RR SSIM estimate, with subjective quality evalua-
tions (in particular, the differences of mean opinion scores) available
in the LIVE database [6]. Four metrics are employed for evaluation,
which include PLCC and MAE after nonlinear mapping between
subjective and objective scores, Spearman’s rank correlation coef-
ficient (SRCC), and Kendall’s rank correlation coefficient (KRCC).
The results are shown in Table 2. It can be observed that in gen-
eral the proposed method performs inferior to SSIM (which is as
expected) and significantly outperforms PSNR. It needs to be men-
tioned that the comparison is unfair to the proposed method, because
the other two are FR measures. However, It outperforms the already
existing general purpose RR measures in the literature [3] [4].

4. IMAGE REPAIRING USING RR FEATURES

Since the RR features reflect certain statistical properties about the
reference signal, they may be used to partially “repair” the distorted
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Fig. 3. SSIM versus RR SSIM estimation Ŝ for LIVE database.

Table 1. MAE and PLCC between SSIM and RR SSIM estimation
Ŝ for LIVE database

MAE PLCC
JP2 (1) 0.0107 0.9829
JP2 (2) 0.0098 0.9894
JPG (1) 0.0147 0.9603
JPG (2) 0.0111 0.9877
Noise 0.0178 0.9816
Blur 0.0156 0.9624
FF 0.0206 0.9760

All data 0.0155 0.9802

image. Here we provide an example that uses RR features to correct
a blurred image. Since blur reduces energy at mid and high frequen-
cies, the subband standard deviation σd of DNT coefficients in the
distorted image is smaller than that of the reference image σr . The
most straightforward way to enforce a corrected image to have the
same statistical property as the reference image is to scale up all the
DNT coefficients in each subband i of the distorted image by a fixed
scale factor si = σi

r/σ
i
d:

νi
repaired = siνi

d . (7)

Figure 4(d) compares the histograms of the reference, distorted and
repaired DNT coefficients. It can be observed that the histogram of
scaled DNT coefficients is very close to that of the reference image.

To reconstruct the repaired image, it remains to invert the DNT
transform, where the critical issue is to estimate the local scalar mul-
tiplier ẑ. Based on Eq. (1), the scalar multiplier for inverse DNT is
given by

ẑinv =
√

(sY )T (C−1
U /s2)(sY )/N

=
√
Y TC−1

U Y/N = ẑ . (8)

This largely simplifies the inversion, as we have already calculated ẑ.
We can then compute the wavelet coefficients using ẑinvνrepaired,
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Fig. 4. Repairing blurred image using RR features. (a) Original “building” image; (b) Blurred image, SSIM = 0.674, Ŝ = 0.662; (c) Repaired,
image SSIM = 0.918, Ŝ = 0.928; (d) DNT coefficient histograms of original, distorted and repaired images.

Table 2. Performance comparison of IQA measures using the LIVE database
PLCC MAE SRCC KRCC

PSNR SSIM Ŝ PSNR SSIM Ŝ PSNR SSIM Ŝ PSNR SSIM Ŝ

JP2 (1) 0.9331 0.9687 0.9597 6.5033 4.7620 4.9860 0.9264 0.9637 0.9555 0.7600 0.8332 0.8140
JP2 (1) 0.8740 0.9691 0.9632 9.9656 5.2016 5.2320 0.8549 0.9604 0.9539 0.6640 0.8290 0.8163
JPG (1) 0.8866 0.9667 0.9449 8.6900 4.7096 5.6854 0.8779 0.9637 0.9493 0.7026 0.8364 0.8096
JPG (2) 0.9167 0.9851 0.9761 10.013 4.6077 5.7997 0.7699 0.9215 0.8979 0.5776 0.7774 0.7240
Noise 0.9879 0.9830 0.9773 3.4195 4.2499 4.8172 0.9854 0.9694 0.9642 0.8939 0.8523 0.8345
Blur 0.7840 0.9483 0.9154 9.0550 4.6651 7.5136 0.7823 0.9517 0.8692 0.5847 0.8010 0.7158
FF 0.8897 0.9552 0.9316 9.9898 6.1810 8.0113 0.8907 0.9556 0.9138 0.7069 0.8207 0.7473
All 0.8721 0.9449 0.9212 10.5248 6.9325 8.3641 0.8755 0.9479 0.9214 0.6864 0.7963 0.7561

followed by an inverse wavelet transform to construct the repaired
image. An example is given in Fig. 4, where the blurred image is
successfully repaired, and the effect is reflected by both SSIM and
the proposed RR SSIM measures.

5. CONCLUSIONS

We propose an RR SSIM estimation algorithm by incorporating
DNT-domain image statistical properties and the design principle
of the SSIM approach. Our experiments show that the proposed
SSIM estimation has good correlations with not only FR SSIM, but
also subjective evaluations of image quality. We also demonstrate
that the RR features being used can be employed to partially repair a
distorted images. The proposed method has a fairly low RR data rate
and is applicable to various types of distortions. It has good poten-
tials to be employed in real-world visual communications systems
for quality monitoring and resource allocation purposes. It may also
be a useful tool in image quality optimization problems when the
reference image is not fully available.
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