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ABSTRACT

Image similarity measurement is a fundamental and com-
mon issue in a broad range of problems in image process-
ing, compression, communication, recognition and retrieval.
Existing image similarity measures are limited to restricted
application environments. The theory of Kolmogorov com-
plexity and the related normalized information distance (NID)
measure provide an attractive theoretic framework for generic
image similarity that is applicable to any scenario. While this
is appealing, the difficulty lies in the implementation due to
the non-computable nature of Kolmogorov complexity. In
this paper, we propose a practical framework to approximate
NID, where the key is to find the shortest program within a
set of potential transformations that convert one image to an-
other and vice versa. As one of the initial attempts in this new
and promising research direction, our preliminary experimen-
tal work demonstrates the wider applicability of the proposed
approach than existing methods.

Index Terms— image similarity measurement, Kol-
mogorov complexity, normalized information distance, com-
pression distance

1. INTRODUCTION

Measuring the similarity between two images is a funda-
mental issue in many problems throughout the entire field of
image processing and machine vision. These include image
restoration, denoising, coding, communication, interpolation,
registration, fusion, classification and retrieval, as well as
object detection, recognition and tracking. Many existing
image similarity measures were proposed to work with very
specific types of image distortions (e.g., JPEG compression)
[1]. There are also methods such as the structural similarity
(SSIM) index [2] that are applicable to a wider range of ap-
plications. However, even these “general-purpose” methods
[1] are still limited in their application scopes. For example,
SSIM does not apply or work properly when significant geo-
metric changes (e.g., enlargement by a factor of 2, or rotation
by 90 degrees) exist between the two images being compared.

The theory of Kolmogorov complexity provides solid
groundwork to build a universal and generic information dis-
tance metric between any objects that minorizes all metrics

in the class [3]. A practically more useful metric, namely the
normalized information distance (NID), was introduced in
[4]. To overcome the non-computable nature of Kolmogorov
complexity and NID, an normalized compression distance
(NCD) measure was proposed [4], which is an effective
approximation of NID and has found many successful appli-
cations in the fields of bioinformatics, pattern recognition,
and natural language processing.

Nevertheless, the application of NID for image similarity
measurement is still in its early stage. Several authors have
done pioneering work that applied the NID framework and the
NCD algorithm to image clustering [5], image distinguisha-
bility [6], content-based image retrieval [7] and video classifi-
cation problems [8], but most of them reported only moderate
success. Moreover, due to their focuses on specific applica-
tions, the generic property of NID was not fully exploited.

In this paper, we attempt to develop a practical framework
that can effectively approximate NID, where the most critical
step is to find the shortest program within a list of available
transformations that convert one image to another. Based on
the framework, generic image similarity measures can be built
that have much wider applicability than existing image simi-
larity measures.

2. KOLMOGOROV COMPLEXITY AND
NORMALIZED INFORMATION DISTANCE

The Kolmogorov complexity [3] of an object is defined to be
the length of the shortest program that can produce that object
on a universal Turing machine and halt:

K(x) = min
p:U(p)=x

l(p) . (1)

In [4], the authors assume the existence of a general decom-
pressor that can be used to decompress the presumably short-
est program x∗ to the desired object x. However, they note
that due to the non-computability of this concept, a compres-
sor that does the opposite does not have to exist.

The conditional Kolmogorov complexity of x relative to
y is denoted by K(x|y). An information distance between x
and y can then be defined as max{K(x|y,K(y|x)}, which
is the maximum of the length of the shortest program that
computes x from y and y from x. To convert it to a normalized
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symmetric metric, a novel NID measure was introduced in
[4]:

NID(x, y) =
max{K(x|y∗),K(y|x∗)}

max{K(x),K(y)}
. (2)

It was proved that NID is a valid distance metric that satisfies
the identity and symmetry axioms and the triangular inequal-
ity [4].

The real-world application of NID is difficult because
Kolmogorov complexity is a non-computable quantity [3].
By using the fact that K(xy) = K(y|x∗) + K(x) =
K(x|y∗) + K(y) (subject to a logarithmic term), and by
approximating Kolmogorov complexity K using a practi-
cal data compressor C, a normalized compression distance
(NCD) was proposed in [4] as

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}
. (3)

NCD has been proved to be an effective approximation of
NID and achieves superior performance in bioinformatics ap-
plications such as the construction of phylogeny trees using
DNA sequences [4].

3. THE PROPOSED FRAMEWORK

When NCD was used to quantify image similarities, it did
not achieve the same level of success as in other application
fields. For example, it was reported in [6] that NCD works
well when parts are added or subtracted from an image, but
struggles when image variations involve form, material and
structure. We believe that this is mainly due to the poor ap-
proximation of K(xy) using C(xy), which is often imple-
mented by applying a regular image compressor to the con-
catenation of two images. For example, when an image is a
ninety-degree rotated copy of another, concatenating two im-
ages would not facilitate any efficient compression. To avoid
this problem, we propose to approximate the conditional Kol-
mogorov complexity in Eq. (2) directly by designing a condi-
tional image compressor denoted by CT , so that

K(y|x) ≈ CT (y|x) and K(x|y) ≈ CT (x|y) . (4)

This leads to a normalized conditional compression distance
(NCCD) measure given by

NCCD(x, y) =
max{CT (x|y), CT (y|x)}

max{C(x), C(y)}
. (5)

It remains to define the conditional compressor CT . Here
we propose a practical solution by making use of a set
of transformations that convert one image to another. Let
{Ti|i = 1, · · · , N} be the set of transformations, let Ti(x)
represent the transformed image when applying the i-th trans-
form to image x, and let p(Ti, x) denote the parameters used
in the transformation. Each type of transformation is also

associated with a parameter compressor, and Cp
i denotes the

parameter compressor of the i-th transformation. We can then
define our conditional compressor as

CT (y|x) = min
i
{C[y − Ti(x)] + Cp

i [p(Ti, x)] + log2(N)} ,
(6)

where C remains to be a practical image compressor which
encodes the difference between y and the transformed image
Ti(x), and the log2(N) term computes the number of bits
required to encode the selection of one out of N potential
transformations.

The idea of finding the simplest transformation between
two images is sensible from the viewpoint of human visual
perception, for which it has long been hypothesis that the bi-
ological visual system is an efficient coder of the visual world
[9]. For example, given two images that are rotated copy of
each other, our visual system would not interpret the differ-
ence between them by directly differencing their intensity val-
ues (which requires a large number of bits to encode the resid-
ual), but by estimating the amount of rotation (which can be
coded very efficiently).

4. IMPLEMENTATION

An advantage of NCCD (as opposed to NCD) is that it pro-
vides a more flexible framework so that different types of
transformations can be included. The list of transformations
can also be incremental, in the sense that new transforma-
tions, when available, can be easily added into the existing
list, and expanding the list always improves the approxima-
tion of NCCD to NID. Of course, exhausting all possible
transformations is practically impossible. However, by go-
ing through a handful of transformations, it may be sufficient
to appropriately cover most image distortions encountered in
real-world applications.

Our current implementation of NCCD are as follows.
First, we adopt the content adaptive lossless image compres-
sion algorithm (CALIC) [10] as the base image compressor,
which achieves superior performance when compared with
state-of-the-art algorithms. CALIC is employed in computing
the denominator of Eq. (5) as well as the first term in Eq. (6).
Since y − Ti(x) in Eq. (6) can generate negative values and
CALIC applies to grayscale images with positive intensity
values only, the mean intensity value of y − Ti(x) is shifted
to mid-gray level before the application of CALIC. Second,
the types of transformations involved in the computation of
CT include

• Global contrast and luminance change. This is com-
puted by a pointwise intensity transformation defined
as s = α(r− r̄)+ r̄+β, where r and s are the intensity
values before and after the transformation, respectively,
r̄ is the average value of r, and α and β are the parame-
ters that determine the degrees of contrast and mean lu-
minance changes, respectively. In a special case when



NCCD = 0.8121, SSIM = 0.4649, 

MSE = 73.4

NCCD = 0.2189, SSIM = 0.7059,
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Fig. 1. Comparison of MSE, SSIM and NCCD measures using images distorted by JPEG compression, blur, JPEG2000
compression and contrast reduction.

α = 1 and β = 0, it reduces to an identity transform, i.e.,
T (x) = x.

• Global Fourier power spectrum scaling. This trans-
formation attempts to match two images by scaling
the power spectrum of one image in the Fourier trans-
form domain. Let X(ω) and Y (ω) be the Fourier
transforms of x and y, respectively. We first find the
best linear transform parameters p1 and p2, such that
‖|Y (ω)| − (p1|X(ω)| + p2)‖2 is minimized. We then
define the transform T (x) as the inverse Fourier trans-
form of p1X(ω) + p2.

• Global affine transform. This transformation tries to
match one image by applying a global affine transform
to another. The transformation can be encoded using
six parameters and covers a variety of image changes
including translation, scaling (zooming in or zooming
out), rotation, and shearing.

• Local registration transformation. This is implemented
by aligning two images using the coherent point drift
registration algorithm [11] that allows for both rigid
and affine non-rigid transformations.

Given a pair of images x and y for comparison, we attempt
all the above transformations from both x to y and y to x
(multiple transformations are also allowed). This is important

because the values of K(x|y) and K(y|x) can be drastically
different (and so do the values of CT (x|y) and CT (y|x)). For
example, converting the “Lena” image x to a blank image y
is easy (as y can be created by a very short program), but the
opposite is not.

5. EXPERIMENT

The goal of our preliminary experimental work is to test the
applicability of the proposed NCCD implementation for var-
ious distortion types and compare it with existing measures
such as the mean squared error (MSE) and SSIM. Figure 1
shows four original images distorted with JPEG compression,
blur, JPEG2000 compression and contrast reduction. MSE
appears to be a poor measure in this test, because the best
quality image (contrast reduced) that does not exhibit any
structural distortion, results in the worst MSE value. Both
SSIM and NCCD works reasonably well, which give the best
quality values (highest SSIM and lowest NCCD) to the con-
trast reduced image.

In Fig. 2, the test images underwent certain geometric
distortions, for which the MSE and SSIM measures do not
apply or cannot work appropriately. By contrast, NCCD
produces meaningful similarity evaluations. In particular, it
works when the two images are of different size and shape;
it works if parts of an image are missing; it also works when
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Fig. 2. Tests using images with geometric and compound distortions.

images are shifted and/or the black/white pixels are reverted.
All of these demonstrate the wider applicability of NCCD.

6. CONCLUSION

This work aims to develop a generic image similarity measure
based upon the theoretic groundwork of Kolmogorov com-
plexity and the NID metric. The most important contribution
of this paper is to propose a practical framework of NCCD for
the approximation of NID. The framework is flexible and ex-
pandable to include any image transformations that may help
find the shortest description that converts one image to an-
other and vice versa. Although the current implementation
and experimental work is only preliminary, the resulting sim-
ilarity measure works properly in a wide variety of scenarios.
To the best of our knowledge, no existing image similarity
measure has achieved the same level of wide applicability.
In the future, the implementation of NCCD can be improved
by incorporating more transformations. To further refine the
NCCD framework, it is also useful to take into account the
degrees of perceptual relevance of different transformations.
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