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ABSTRACT

Complex wavelet structural similarity (CW-SSIM) index has
been proposed as a promising image similarity measure that is
robust to small geometric distortions such as translation, scal-
ing and rotation of images, but how to make the best use of
it in image classification problems has not been deeply inves-
tigated. In this paper, we propose a novel “feature-extraction
free” image classification algorithm based on CW-SSIM and
use handwritten digit recognition as an example to demon-
strate it. First, a CW-SSIM based unsupervised clustering
method is used to divide the training images into clusters and
to pick a representative image for each cluster. A supervised
learning method based on support vector machines is then em-
ployed to maximize the classification accuracy based on CW-
SSIM values between an input image and the representative
images. Our experiments show that such a conceptually sim-
ple image classification method, which does not involve any
registration, intensity normalization or sophisticated feature
extraction processes, and does not rely on any modeling of
the image patterns or distortion processes, achieves competi-
tive performance with reduced computational complexity.

Index Terms— complex-wavelet structural similarity,
image classification, handwritten digit recognition, cluster-
ing, support vector machine

1. INTRODUCTION

Image classification is a common problem in a wide range
of applications and involves both image processing and pat-
tern recognition components. The majority of existing image
classification systems contain a “feature extraction” stage as a
pre-classification step. These features are structural descrip-
tors of the image and need to be selected with great care, be-
cause “a classifier is only as good as its features”. However,
when image features are carefully designed and tuned to spe-
cific classification problems, they tend to become application-
dependent and lose generalization capability. As a result, the
features may have to undergo a new phase of design or train-
ing when images with different shapes and structures are to be
classified. Certain machine learning techniques, such as arti-
ficial neural networks, could automatically “creates” features,
but feature discovery is left to a “black box” that is obscure

and hard to be understood in intuitive ways. On the other
hand, template matching based classification methods, where
the similarities between a test image and a set of templates are
evaluated and used to determine the class label, are concep-
tually simple and require no sophisticated feature extraction
processes. However, the effectiveness of such methods rely
heavily on the image similarity measure being employed.

Recently, there has been significant progress in the de-
sign of image similarity measures. In particular, the structural
similarity (SSIM) index [1] has been found to be a much bet-
ter measure than the widely used mean squared error (MSE)
in full-reference image quality assessment tasks, where the
similarity between a distorted and a perfect-quality reference
images is evaluated and used as an indicator of the quality of
the distorted image. The philosophy behind SSIM is to dis-
tinguish between structural and non-structural distortions and
treat them unequally, which is presumably what the human
visual system (HVS) would do. Despite the superior perfor-
mance of SSIM over MSE, both of them are very sensitive
to geometric image distortions such as small scaling, rota-
tion, and translation. In image classification tasks, however,
resistance to these distortions is crucial because it is a com-
mon practice that images are not perfectly aligned to each
other before a similarity measure is computed. In order to
remove this “defect” from SSIM while maintainng its advan-
tages, the complex wavelet SSIM (CW-SSIM) index was pro-
posed in [2], which has been shown to be a useful measure
in a series of applications, including image quality assess-
ment [3], line-drawing comparison [3], segmentation com-
parison [3], range-based face recognition [4] and palmprint
recognition [5]. It has also been used for image classification
tasks in a role of a kernel function [6].

In this study, we investigate CW-SSIM as a novel image
classification tool in the context of handwritten digit recog-
nition. Our method benefits from CW-SSIM as a powerful
similarity measure that is robust against small geometric dis-
tortions. This allows us to avoid any preprocessing work
such as deskewing, pixel shift, scaling, rotation and feature
extraction. We show that CW-SSIM alone can achieve high
performance but requires excessive computation because the
CW-SSIM values between a test image and all images in the
training set need to be calculated. To deliver a practical so-
lution, the majority of our effort has been spent on learning
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the most representative structures by employing CW-SSIM
and on minimizing the classification error by using a support
vector machines (SVM) based classifier [7] running on CW-
SSIM values of the representative images. This results in im-
proved performance with significantly reduced computational
complexity.

2. METHOD

2.1. Structural Similarity Indices

The SSIM index was originally proposed to predict human
preference in evaluating image quality [1]. Assuming that
the HVS is optimal in extracting structural information from
the visual scene, a comparison of structural similarity should
provide a good estimate of perceptual image similarities. The
original SSIM algorithm works in the spatial domain. Given
two image patches x = {xi|i = 1, ...M} and y = {yi|i =
1, ...M}, the SSIM index is defined as:

S(x,y) =
(2µxµy + C1)(2σxy + C2)

(µ2
xµ

2
y + C1)(σ2

x + σ2
y + C2)

. (1)

where µ, σ are the sample mean, standard deviation or covari-
ance, and C1 and C2 are two positive stabilizing constants,
respectively [1].

The major drawback of the spatial domain SSIM index
is its high-sensitivity to translation, scaling, and rotation of
images [2, 3], which are also non-structural distortions. To
overcome this problem, the CW-SSIM measure was proposed
in [2], which was built upon local phase measurements in
complex wavelet transform domain. The underlying assump-
tions behind CW-SSIM are that local phase pattern contains
more structural information than local magnitude, and non-
structural image distortions such as small translations lead
to consistent phase shift of a group of neighboring wavelet
coefficients. Therefore, CW-SSIM is designed to separate
phase from magnitude distortion measurement and impose
more penalty to inconsistent phase distortions. Specifically,
given two sets of coefficients cx = {cx,i|i = 1, ...,M} and
cy = {cy,i|i = 1, ...,M} extracted at the same spatial loca-
tion in the same wavelet subbands of the two images being
compared, The local CW-SSIM index is defined as:

S̃(cx, cy) =
2|

∑M
i=1 cx,ic

∗
y,i|+K∑M

i=1 |cx,i|2 +
∑M

i=1 |cy,i|2 +K
. (2)

where c∗ denotes the complex conjugate of c, andK is a small
positive stabilizing constant. The value of the index ranges
from 0 to 1, where 1 implies no structural distortion (but still
could have small spatial shift). The global CW-SSIM index
S̃(Ix, Iy) between two images Ix and Iy is calculated as the
average of local CW-SSIM values computed with a sliding
window running across the whole wavelet subband and then
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Fig. 1. Framework of the proposed method.

averaged over all subbands. It was demonstrated that CW-
SSIM is simultaneously insensitive to luminance change, con-
trast change, and small geometric distortions such as transla-
tion, scaling and rotation [2, 3]. This makes CW-SSIM an
ideal choice for image classification tasks because it is ver-
satile and largely reduces the burden of preprocessing steps
such as contrast and mean adjustment, pixel shifting, deskew-
ing, zooming and scaling.

2.2. Proposed Method

Here we present our CW-SSIM based image classification
method with handwritten digit recognition as our application
in mind. However, the general approach we are presenting
here is not restricted to this specific example, but should ap-
ply to many other applications as well. Given a set ofN train-
ing images {Ii|i = 1, ..., N} and their associated class labels
{li|i = 1, ..., N} (in the case of digit recognition, there are
10 classes, each representing a digit between 0 and 9, i.e.,
li ∈ [0, 9]), the most straightforward way of applying CW-
SSIM for image classification is to compute CW-SSIM be-
tween a test query image Iq and every training image Ii and
then pick the one with the highest CW-SSIM value as the win-
ner. This CW-SSIM alone algorithm can be expressed as

lrecog(Iq) = lj , where j = arg max
i∈[1,N ]

S̃(Iq, Ii) . (3)

Indeed, due to the desirable properties possessed by CW-
SSIM, this conceptually simple algorithm can achieve very
good performance, especially when the training set is large, as
will be shown in Section 3. The problem with this method is
that it demands for CW-SSIM calculations of the query image
with the whole training set. This could be computationally
extremely expensive and thus prohibit its use in real-world
applications. There could also be other approaches based on
decision rules different from Eq. (3) (e.g., K-nearest neigh-
bors) that could achieve good recognition accuracy, but these
approaches will suffer from the same complexity problem.

We propose a novel method with improved recognition
performance but largely reduced complexity. The general
structure is illustrated in Fig. 1. The training algorithm con-
sists of two stages. In the first stage, the training images are



divided into clusters and one representative image (or tem-
plate) is selected for each cluster. It is useful to be aware
that there could be many different writing styles of the same
digit, thus it makes sense to group the training images not
only by their class labels, but also by their styles or struc-
tures. CW-SSIM is an ideal tool for this task because images
originated from the same digit and written with the same style
are likely to be shifted, scaled, and/or rotated versions of each
other. Our unsupervised clustering method works as follows.
First, we calculate a matrix C of size N ×N , which contains
the CW-SSIM values of every image with every other image
in the training set. Each column of this matrix is a vector
si = {S̃(Ii, Ij)|j = 1, ...N} that contains the CW-SSIM val-
ues between the i-th image and all other images in the train-
ing set. This vector may be considered as “features” of the
i-th training image (though not descriptive features of image
structures used in many other image classification methods).
We start by taking the whole training set as one cluster and
define the centroid of the cluster as

I(1)
c , where c = arg max

i∈[1,N ]

∑
j∈[1,N ]

S̃(Ii, Ij) . (4)

Now assume that we are at a stage where we have M clus-
ters with centroids I(1)

c , I(2)
c , ..., I(M)

c , respectively (the initial
stage corresponds to M = 1 case). We decide on whether to
create a new cluster by checking whether

min
i∈[1,N ]

max
j∈[1,M ]

S̃(Ii, I(j)
c ) > T , (5)

where T is a predefined threshold. If this is satisfied, then we
can stop with the current number of clusters and use the cor-
responding centroids as representative images for the clusters.
Otherwise, we define a new cluster centroid as

I(M+1)
c = Ik , where k = arg min

i∈[1,N ]
max

j∈[1,M ]
S̃(Ii, I(j)

c ) ,

(6)
and let M = M + 1. After a new centroid is added, we need
to reassign the membership of each image Ii for i = 1, ..., N
by

Ii ∈ Cj , where j = arg max
j∈[1,M ]

S̃(Ii, I(j)
c ) , (7)

where Cj is the collection of all images belonging to the j-th
cluster. The new centroid for each class j ∈ [1,M ] is then
updated by

I(j)
c = Im , where m = arg max

Ii∈Cj

∑
Ik∈Cj

S̃(Ii, Ik) . (8)

This is followed by the next stage of judgement on whether a
new cluster should be created, as in Eq. (5).

In the second stage of the training phase, we have the
representative templates at hand. We can then describe any
training image using a length-M vector of CW-SSIM values
between the training image and all templates. Since every

Table 1. Comparisons of Recognition Error Rate
Training
Samples MSE

CW-SSIM
Alone

CW-SSIM
+SVM

Time
Saving

2000 12.57% 6.59% 6.02% 88.60%
5000 10.41% 4.68% 4.24% 95.24%

10000 9.56% 3.75% 3.70% 97.57%
20000 8.23% 2.99% 2.81% 98.76%
30000 7.62% 2.60% 2.45% 99.20%
60000 6.92% 2.38% 1.91% 99.61%

training image has a class label associated with it, this is a su-
pervised learning problem. In particular, we develop a classi-
fier by using support vector machines (SVM) with Gaussian
kernels [7], which has been proven to be a powerful classifier
of excellent generalization capability.

The testing part of our algorithm is straightforward. For
each test query image, we compute its CW-SSIM values with
respect to all templates, resulting a length-M vector of CW-
SSIM values. We then feed this vector to the SVM classifier,
which produces a classification result.

3. EXPERIMENTAL RESULTS

Our experiments were performed on the MNIST database
of handwritten digit images [8], which has been the most
widely used benchmark in the literature. The database in-
cludes 60,000 training and 10,000 test samples. All images
have been size-normalized and centered in a 28 × 28 box.

First, we compare the performance of using MSE or CW-
SSIM alone (as described in Section 2). The results with dif-
ferent numbers of training images are shown in the second
and third columns in Table 1. It appears that CW-SSIM alone,
as a “raw” similarity measure (without any machine learning
process involved), can achieve very good performance (less
than 3% error rate) and is significantly better than MSE.

Second, we test the effect of the number of templates on
the performance of the proposed CW-SSIM + SVM algo-
rithm. Note that in the clustering stage, the resulting number
of clusters (and thus templates) varies with different choices
of the threshold value T . The recognition error rate as a func-
tion of the number of templates is shown in Fig. 2. It can
be observed that using a very small number of templates (38
out of 60,000 training images), the proposed algorithm can
achieve around 95% of accuracy. The error rate further de-
creases with the increasing number of templates, which col-
lect more variations of representative structures. Some of the
learned templates are shown in Fig. 3, where we can see that
the templates are fairly different from each other even within
each digit category, representing different writing styles.

Finally, we compare the proposed CW-SSIM + SVM al-
gorithm with MSE or CW-SSIM methods alone. The results
are shown in Table 1 for different numbers of training sam-



0 200 400 600 800 1000 1200
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

number of templates

te
st

 s
et

 e
rr

or
 r

at
e

Fig. 2. Recognition error rate of proposed scheme as a func-
tion of the number of templates.

ples. It appears that in all cases, the proposed method achieves
lower error rate than the other two methods. The performance
improves with the size of the training set. When all 60,000
training images are used, the error rate is reduced to less than
2%. It is important to mention that such improvement in
recognition accuracy is obtained with largely reduced com-
putational complexity because only a very small percentage
of images (i.e., the selected templates) need to be compared.
As reported in Table 1, the time saving could be as high as
99.6%. Our non-optimal MATLAB implementation on a Intel
Q9400 @ 2.66GHz computer in single core mode takes about
2.5 seconds to classify a test image using 228 templates. It has
the potential to achieve real-time performance with code opti-
mization and hardware implementation. Although there exist
other recognition systems that achieved higher accuracy [8],
they typically involve preprocessing stages (e.g., deskewing
and denoising) and/or training and testing algorithms that are
much more complicated in terms of both algorithm imple-
mentation and computational complexity.

4. CONCLUSION

We proposed a novel CW-SSIM based image classification
method, which does not rely on any normalization, alignment
or feature extraction processes, and does not involve any mod-
eling of the patterns or distortion processes, but achieves com-
petitive recognition accuracy with low computational com-
plexity. These features make it a flexible approach that has
good potentials to be applied to a broad range of image clas-
sification problems.
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