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ABSTRACT

Perceptually inspired image processing has been an emerging
field of study in recent years. Here we make one of the first
efforts to incorporate the structural similarity (SSIM) index,
a successful perceptual image quality assessment measure,
into the framework of non-local means (NLM) image denois-
ing, which is a state-of-the-art method that delivers superior
desnoising performance. Specifically, a denoised image patch
is obtained by weighted averaging of neighboring patches,
where the similarity between patches as well as the weights
assigned to the patches are determined based on an estimation
of SSIM. A two-stage approach is proposed for robust SSIM
estimation in the presence of noise. Moreover, motivated by
the ideas behind SSIM, we adjust the contrast and mean of
each patch before feeding it into the weighted averaging pro-
cess. Our experimental results show that the proposed SSIM-
based NLM algorithm achieves better SSIM and PSNR per-
formance and provides better visual quality than least square
based NLM method.

Index Terms— image denoising, structural similarity,
non-local means, perceptual image processing

1. INTRODUCTION

Despite the ubiquitous usage in a wide variety of signal pro-
cessing applications, the mean squared error (MSE) appears
to be a poor measure when perceived image quality is of our
major concern [1]. The structural similarity (SSIM) index
[2] is a recently proposed image similarity measure that has
shown superior performance over MSE in predicting visual
quality of images [1]. SSIM and its derivations have been
applied to a broad range of applications, ranging from im-
age restoration and compression, to visual communication
and pattern recognition [1]. The usage of SSIM should not
be restricted to perceptual quality evaluation and algorithm
comparison purposes only. Perhaps the more interesting and
promising application area is to use it in the design and opti-
mization of image processing algorithms and systems.

Recently there has been a great deal of attention paid to
the problem of image denoising, which is not only a practi-
cally useful application, but also an ideal test bed for image
representation, modeling and estimation theories. One of the

most successful image denoising algorithms is the non-local
means (NLM) method [3], which has achieved state-of-the-
art performance. NLM denoising is a nonlocal filtering (or
weighted averaging) technique where the weights are decided
based on similarity between the current image patch being
denoised and the other patches in the image within a neigh-
borhood. Since MSE is employed for calculating the weights,
the resulting denoised image might not have the best percep-
tual quality. This motivates us to replace the role of MSE with
SSIM in the framework. There are two issues that need to be
resolved before effective SSIM-based approach can be devel-
oped. First, we would need to reliably estimate the SSIM
value between two original image patches in the presence
of noise. Directly using the SSIM value between two noisy
patches to define the weight would not lead to good results.
This is because SSIM attempts to match the structures of two
patches, but when the signal-to-noise ratio is low, the noise
submerges the actual structure of the image, and thus SSIM
evaluation would favor those patches with the noise pattern
best matched. Second, once weights are calculated based on
SSIM, it is important to adjust the contrast and mean values of
the patches before weighted averaging. This is because SSIM
may pick those patches that are structurally similar but with
different contrast and mean values, and thus direct averag-
ing these patches (that have different contrast and mean vari-
ations) would provoke further undesired distortions. These
issues are tackled with the help of proposed two stage denois-
ing algorithm on similar lines to BM3D [4], a state-of-the-art
denoising method which also uses two stages to perform im-
age denoising.

2. PROBLEM FORMULATION

NLM algorithm [5] replaces the intensity of each pixel in the
noisy image by a weighted average of all the pixel intensities
in the image. More generally, the nonlocal filter (NLF) in the
continuous space can be represented as follows [6]

PNLF (f(x, y)) =

∫
Ω
w(x, y;x′, y′)f(x′, y′)dx′dy′∫

Ω
w(x, y;x′, y′)dx′dy′

, (1)

where w(x, y;x′y′) is the weighting function related to the
similarity between two patches at (x, y) and (x′, y′). The
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Table 1. Comparisons of NLM denoising using L2 and SSIM
of original image patches for weight calculation

Test image Barbara
Noise std (σ) 15 25 30 50

PSNR comparison (in dB)
Noisy image 24.61 20.29 18.81 14.74
L∗2-NLM 31.42 27.33 25.97 22.49
SSIM∗-NLM 32.21 29.59 28.65 25.61

SSIM comparison
Noisy image 0.729 0.543 0.474 0.289
L∗2-NLM 0.925 0.818 0.759 0.543
SSIM∗-NLM 0.947 0.902 0.879 0.779

weight in NLM denoising is specified by borrowing ideas
from the work of nonparametric sampling-based texture syn-
thesis [7]. It is calculated based on L2 distance between two
patches at (x, y) and (x′, y′).

To better reflect the perceptual similarity between two
patches and also to give favor to the patches that are struc-
turally similar, we opt to replace the role of L2 by SSIM in
computing the weight function. Let X1 and X2 be two image
patches extracted from the original noise-free image. The
SSIM index between them is defined as

S(X1, X2) =
(2µX1

µX2
+ C1)(2σX1X2

+ C2)

(µ2
X1

+ µ2
X2

+ C1)(σ2
X1

+ σ2
X2

+ C2)
, (2)

where µX , σX , and σX1X2
are the mean, standard deviation,

and cross correlation between the two patches, respectively,
and C1 and C2 are positive stabilizing constants.

To understand the impact of replacing L2 with SSIM,
we carried out an empirical study where all weights were
calculated using patches extracted from the original image
but computed using L2 and SSIM, respectively. With these
weights, the NLM denoising results of “Babara” image at
different noise levels are shown in Table 1, where we observe
large gains in both PSNR and SSIM values of the denoised
image when SSIM is employed for weight computation.

The above empirical study, though very instructive, does
not provide a working denoising algorithm, because the orig-
inal image patches are not accessible. Therefore, the critical
problem here is how to predict the SSIM value between X1

and X2 from their noisy observations.

3. PROPOSED SCHEME

Let Y1 and Y2 be two observed noisy patches that are created
from two clean original patches X1 and X2 by

Y1 = X1 +N1 , (3)

Y2 = X2 +N2 , (4)

where N1 and N2 are the corresponding i.i.d Gaussian noise
patches with standard deviation σn. The purpose here is to

estimate S(X1, X2) using Y1, Y2. A simple approximation
would be

S(X1, X2) ≈
(2µY1

µY2
+ C1)(2σY1Y2

+ C2)

(µ2
Y1

+ µ2
Y2

+ C1)(σ2
Y1

+ σ2
Y2
− 2σ2

n + C2)
(5)

Here we have made use of the assumptions that the noise N1

and N2 are zero-mean, the signal X1 and X2 are uncorre-
lated with noise, and the noise N1 and N2 added at different
locations are also uncorrelated. Our studies suggest that the
approximation in Eq. ((5)) does not achieve desired accuracy
in estimating S(X1, X2) because the assumptions does not
hold for small patches. Also, when the variance of noise is
significant as compared to that of the image patch, SSIM is in
favor of similar noise patterns rather than image structures.

To overcome the problem above, we propose a two-stage
method. In the first stage, we compute a local estimate of the
noise using the method proposed in [5]. As mentioned in [3],
NLM denoising is based on the “method noise” and the resid-
ual image obtained after subtracting the denoised image from
the noise-free image looks like random noise and does not
contain structures similar to those contained in the original
image. We believe that the noise estimated by NLM denois-
ing can be used to provide a better estimate of S(X1, X2)
because more accurate information about the noise pattern at
the local patch is available. Suppose the estimated noise is
given by N̂1 and N̂2, respectively. It enables us to estimate
X1 and X2 by

X̂1 = Y1 − N̂1 , (6)

X̂2 = Y2 − N̂2 . (7)

We can then use X̂1 and X̂2 in the second step to estimate
S(X1, X2) and define our SSIM-based weight as

wSSIM = S(X̂1, X̂2) . (8)

Before computing the weighted averaging for each patch,
we perform further adjustment on the mean and contrast of
each patch Y by

Y ′ =
σX̂c

+ c

σY + c
(Y − µY ) + µX̂c

(9)

where µY , σY and µX̂c
, σX̂c

are the mean and contrast val-
ues of the current patch and the patch to be denoised (esti-
mated using Eq. (6)), respectively and c is the stabilizing con-
stant. This adjustment is motivated by the ideas behind SSIM,
which separates the measurement of mean, contrast and struc-
ture. Indeed, SSIM-based weight calculation may help collect
those image patches that are structurally similar to the patch
being denoised but with different contrast and mean values.
To avoid creating bias in mean or contrast, it is useful to nor-
malize the patch first, such that only the structural part of the
patch contributes to the denoising task.

Finally, we create our final denoised patch at location i by

X̃(i) =

∑
j∈Ni

wSSIM(i, j)Y ′(j)∑
j∈Ni

wSSIM(i, j)
, (10)



Table 2. SSIM and PSNR comparisons of image denoising results
Test image Barbara Lena Boat
Noise std (σ) 15 25 30 50 15 25 30 50 15 25 30 50

PSNR comparison (in dB)
Noisy image 24.61 20.29 18.81 14.74 24.62 20.27 18.78 14.71 24.65 20.27 18.76 14.61
L2-NLM 31.44 28.69 27.55 23.85 32.71 29.94 28.57 25.52 30.87 28.09 27.05 23.91
SSIM-NLM 32.10 29.28 28.21 24.85 33.11 30.52 29.42 25.92 31.26 28.54 27.58 24.39

SSIM comparison
Noisy image 0.729 0.543 0.474 0.289 0.489 0.402 0.338 0.192 0.676 0.475 0.406 0.239
L2-NLM 0.934 0.871 0.832 0.651 0.869 0.832 0.781 0.619 0.889 0.796 0.748 0.565
SSIM-NLM 0.944 0.889 0.858 0.721 0.893 0.858 0.818 0.645 0.900 0.815 0.779 0.599

where Ni denotes the union of the neighbors around i and
wSSIM(i, j) is the SSIM weight computed between the
patches located at i and j.

4. SIMULATION RESULTS

We test image denoising algorithms on various images with
noise standard deviation σ ranging from 15 to 50. The L2

and SSIM based NLM methods are denoted as L2-NLM [3]
and SSIM-NLM, respectively. All L2-NLM results are ob-
tained using the code provided by Buades et. al. at [8]. The
search ranges for both algorithms are fixed at 7 × 7 in order
to limit the complexity of the algorithm. The added compu-
tational complexity of SSIM-NLM over L2-NLM mostly lies
in estimating the SSIM values between patches. In our ex-
periment, we found it negligible compared with the overall
computational cost of the NLM algorithm.

Table 2 shows the results for images “Barbara”, “Lena”
and “Boat”. It can be observed that the proposed SSIM-NLM
method achieves better performance than L2-NLM in terms
of not only SSIM, but also PSNR. This may be due to SSIM’s
capability of collecting those image patches that have similar
structure but with different mean and/or contrast. We also
observe in our experiment that the performance gap between
the two methods increases further when the search range is
increased.

It is interesting to compare the denoising results of
“Babara” image in Table 2 with those in Table 1. It can
be observed that when similarity values are calculated by
using the original noise-free image, SSIM-NLM performs
significantly better than L2-NLM in terms of both SSIM
and PSNR. Another observation is that the denoising perfor-
mance of L2-NLM degrades when the original image is used
to compute the weights. This is likely because of the weight
mapping function and thresholds used in the implementation
in [5,8]. When the original image is used, many more patches
with lower L2 distances also make significant impact on de-
noising. This often results in blur of the denoised image. By
contrast, the SSIM-NLM method does not suffer from such a
problem, implying that SSIM is probably a better measure to

select similar patches.
To provide visual comparisons of the denoising algo-

rithms, Fig. 1 shows two image areas cropped from the
“Babara” image denoised by L2-NLM [3] and SSIM-NLM,
respectively. It can be seen that the proposed SSIM-NLM
scheme preserves many local structures better and therefore
has better perceptual image quality. The visual quality im-
provement is also reflected in the corresponding SSIM maps,
which provide useful guidance on how local image quality
is improved over space. It can be observed from the SSIM
maps that the areas which are relatively more structured
benefit more from the proposed denoising algorithm as the
quality measure used is better at calculating the similarity of
structures as compared to MSE.

5. CONCLUSIONS

We proposed an SSIM-based NLM method for image denois-
ing. The key of our approach is to replace the role of MSE
with SSIM in measuring patch similarities and in calculating
weights. We propose a robust method to estimate SSIM in the
presence of noise and adjust the mean and contrast of image
patches before using them for weighted averaging. Our sim-
ulation results demonstrate the promises of the proposed ap-
proach and also indicate the potentials of replacing the ubiq-
uitous PSNR/MSE with SSIM as the optimization criterion in
image processing applications.
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