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ABSTRACT

Image denoising has been an extensively investigated problem in the
field of image processing, but little research has been dedicated to the
development and validation of image quality assessment (IQA) ap-
proaches for denoised images. Without such IQA methods, fair com-
parison is difficult and further improvement is aimless. In this study,
we first create a denoised image database and conduct a subjective
experiment to compare the quality of these images. We find widely
used IQA measures only have moderate correlations with subjective
opinions. Furthermore, we propose a novel objective IQA approach
that combines the full-reference SSIM approach with natural scene
statistics (NSS) based reduced-reference IQA methods. Experimen-
tal results show that the proposed scheme outperforms state-of-the-
art IQA models.

Index Terms— Image Quality Assessment, Denoised Image,
Structural Similarity, Naturalness

1. INTRODUCTION

Image denoising has been an extensively investigated problem in
the field of image processing. It not only creates visually appealing
pictures, but also helps facilitate other image processing operations,
such as compression, recognition, and resizing. A large number of
denoising algorithms have been proposed in the past decades, but
little work has been dedicated to quality evaluation of denoised im-
ages. In practice, researchers often use common IQA measures such
as peak signal-to-noise-ratio (PSNR) and the structural similarity in-
dex (SSIM) [1] to compare images and denoising algorithms, but
proper validations of these measures are missing.

Both subjective and objective IQA methods can be employed to
assess the quality of denoised images. In a subjective experiment,
multiple human subjects are asked to rate or rank the quality of de-
noised images for mean opinion score (MOS) collection. Subjec-
tive methods are highly valuable in comparing image denoising al-
gorithms and in validating objective IQA methods, but they are often
expensive and slow. Depending on the accessibility to the original
reference image that is assumed to have perfect quality, objective
IQA measures may be classified into full-reference (FR), reduced-
reference (RR) and no-reference (NR) methods. Objective models
can be employed to evaluate image quality automatically, and can
also be embedded into the design and optimization of various im-
age processing algorithms and systems. Notable success has been
achieved in all three categories, especially in the FR case, where
a number of state-of-the-art algorithms, including the SSIM fam-
ily [1, 2, 3], the visual information fidelity (VIF) method [4], the
visual signal-to-noise (VSNR) approach [5], the feature similarity
(FSIM) algorithm [6], have been shown to have good correlations
with subjective quality ratings when tested using many large-scale
image databases that include a variety of distortion types and lev-
els [3, 6].

In this work, we focus on perceptual quality assessment of de-
noised images. We first create a database that contains denoised im-
ages and carry out a subjective test using the database. We find that
state-of-the-art IQA models only moderately correlate with subjec-
tive opinions. Closer observation reveals that popular deterministic
IQA approaches such as PSNR and SSIM lack appropriate consid-
erations on the statistical naturalness of images. This motivates us
to incorporate the philosophy behind natural scene statistics (NSS)
based models [3] into the framework. Therefore, we propose a novel
objective IQA approach that combines FR multi-scale SSIM with
RR distortion measures based on NSS features. Experimental vali-
dations show that the proposed approach outperforms state-of-the-art
IQA models in predicting subjective rankings of denoised images.

2. SUBJECTIVE QUALITY ASSESSMENT

To the best of our knowledge, currently the only publicly available
database that contains an image denoising dataset is TID2013 [7].
Unfortunately, the dataset includes images denoised using BM3D [8]
only, and the number of samples is too limited to fully validate
an IQA model. Therefore, our first goal is to develop a dedicated
database for IQA of denoised images.

Ten original high-quality natural images of size 512 × 512 are
chosen to cover diverse natural image content. Independent white
Gaussian noise of three levels is added to each image with stan-
dard deviations σn equaling 15, 30, and 50, respectively. Eight al-
gorithms are selected to denoise the images. These include simple
noise-removal operators such as linear Gaussian filter and locally
adaptive Wiener filter (MATLAB Wiener2D function), as well as
state-of-the-art denoising algorithms, such as BLS-GSM [9], SURE-
LET [10], BM3D [8], K-SVD [11], SADCT [12], and CSR [13].
These methods are chosen to cover a diverse types of denoisers in
terms of both methodology and performance. Default parameter set-
tings are adopted for all denoising algorithms without any tuning for
better quality. With all images and denoising algorithms combined,
a total of 240 denoised images are generated, which are divided into
30 image sets of 8 images each, where the images in the same set
are created from the same original image at the same noise level.
A group of sample noisy images, together with their corresponding
denoised images are shown in Fig. 1.

In the subjective experiment, all 8 images in the same set are
shown to the subject at the same time in random spatial order on
one computer screen at actual pixel resolution. The test method con-
forms with ITU-T BT.500 [14]. For each image set, the subject is
asked to rank the perceptual quality of the 8 images from “the best”
to “the worst”. A total of 20 naı̈ve observers participated in the sub-
jective experiment. The final rank-order within each image set is
computed as the average ranking from all valid subjects. Consid-
ering these average rank-orders for all image sets as the “ground
truth”, we can observe the performance of each individual subject
by comparing their rank-order with the “ground truth” for image
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Fig. 1. Sample noisy and denoised images (enlarged and cropped for visibility). Column 1: noisy images with noise standard deviation σn

equaling 15, 30 and 50, respectively. Columns 2-7: denoised images by 6 algorithms.

Fig. 2. Mean and error bars (±std) of KRCC values between indi-
vidual subject and average subject rankings. The rightmost column
is the average performance across all subjects.

set, and then average the performance over all 30 image sets. The
comparison is based on Kendall’s rank-order correlation coefficient
(KRCC). The mean and standard deviation of KRCC values for each
individual subject are depicted in Fig. 2. It can be seen that there
is a considerable agreement between subjects on ranking the quality
of denoised images. The average performance across all individual
subjects is also given in the rightmost column in Fig. 2. This pro-
vides a general idea about the performance of an average subject.

Furthermore, we use the subjective rankings to compare the 8
denoising algorithms by computing their average and standard devi-
ation of rankings across all image sets. The results are summarized
in Fig. 3. It can be observed that state-of-the-art denoisers such as
BM3D [8] and CSR [13] perform significantly better than more tra-
ditional methods. On the other hand, from the sizes of the error bars,
we observe substantial variations between subject preferences of the
denoisers.
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Fig. 3. Mean and error bars (±std) of subjective rankings of individ-
ual denoiser across all image sets.

3. OBJECTIVE QUALITY ASSESSMENT

Object IQA measures are highly desirable in the comparison, pa-
rameter tuning and optimal design of desnoising algorithms. Unfor-
tunately, existing objective IQA models do not give convincing per-
formance in our denoised image database. Details of the test results
will be given in Section 4. One useful observation is that certain FR
measures such as SSIM provide accurate local predictions on how
image structural details are distorted, but the subjects’ overall im-
pression is often altered by whether the images look natural. This
leads us to develop a new IQA measure that combines both local
structural fidelity and global statistical naturalness measures.

For local structural fidelity measure, both the reference and
distorted images are first transformed into a multi-scale and multi-
orientation wavelet domain (in particular, the steerable pyramid [9]
is employed due to its translational and rotational invariance proper-
ties). The structural distortion measure basically follows the SSIM



approach [1] but is applied in wavelet subbands. Let x and y be two
sets of wavelet coefficients collected from corresponding patches
from the reference and distorted subbands, respectively. The local
SSIM between the patches is computed as

Slocal(x,y) =
2σxy + C2

σ2
x + σ2

y + C2
, (1)

where σ2
x and σxy represent the variance and covariance of the co-

efficient blocks, respectively, and C2 is a small positive constants
to avoid instability when the means and variances are close to zero.
Note that the luminance comparison term in the original spatial do-
main SSIM definition [1] is not included because the coefficients are
zero-mean due to the bandpass nature of the wavelet filters. Apply-
ing the local SSIM measure across space generates a subband SSIM
map, and the SSIM maps of all subbands are combined to an overall
structural distortion measure given by

DS = 1−
M∑
i=1

wi

[
1

Ni

Ni∑
j=1

Slocal(xi,j ,yi,j)

]
, (2)

where xi,j and yi,j are the j-th coefficient patches in the i-th sub-
band in the original and distorted images, respectively, Ni is the
number of local SSIM values in the i-th subband, M is the total
number of subbands, and wi is the weight given to the i-th subband
and

∑M
i=1 wi = 1.

For global statistical naturalness, we propose two NSS based
statistical distortion measures. The first is based on the marginal
distributions of wavelet coefficients that are found previously to be
heavy-tailed [9] for natural images, as exemplified in Fig.4. It can
be observed that different distorted images change the distribution in
different ways. In [15], the Kullback-Leibler divergence (KLD) be-
tween the distributions of the reference and distorted images was em-
ployed for RR IQA. However, KLD does not differentiate changes
in the shapes of the distributions. For example, noisy images tend
to make the distribution broader and blurry images may increase the
peakedness of the distribution. Here we use excess kurtosis to cap-
ture such shape changes

K =
1
N

∑
i(xi − µx)

4[
1
N

∑
i(xi − µx)2

]2 − 3 , (3)

where xi is the i-th wavelet coefficient and µx is the mean value of
all wavelet coefficients within the subband, respectively. The kurto-
sis computation is applied to each wavelet subband in the reference
and distorted images, and a distortion measure is given by

DK =

M∑
i=1

wi max

{
1− Ki

d

Ki
r

, 0

}
, (4)

where Ki
d and Kr

r are the excess kurtosis of the i-th subband of the
distorted and reference images, respectively.

Another important discovery in NSS literature is that the power
spectrum of natural images falls with the spatial frequency approx-
imately proportional to 1/fp [16], where f is the spatial frequency
and p is a content-dependent constant. Image distortions such as
noise contamination and denoising operation may change the slope
of such energy falloff, as exemplified in Fig. 5, where different de-
noised images change the energy falloff across scale in different
ways. Our second statistical distortion measure is based on quan-
tifying the changes in the slope of energy falloff. We first compute
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Fig. 4. The marginal wavelet coefficient distributions of reference
and distorted images.

the log-energy of a wavelet subband by

e = log

(
1 +

∑
i uix

2
i∑

i ui

)
, (5)

where the summation is over all coefficients in a subband, ui is the
weight given to the i-th coefficient, and 1 is added before the loga-
rithm computation to avoid negative result when the subband energy
is extremely low. The weight ui = log(1 + x2i /0.1) is determined
by local log energy, so that the computation is more concentrated on
high energy regions (e.g., edges) in the image.

The slope of energy falloff is evaluated between the two finest-
scale wavelet subbands along the same orientation by

F o =
|eoL − eoL−1|

Cs
, (6)

where eoL and eoL−1 are the energy of the o-th orientation at the finest
and second finest scales, respectively, and Cs is a scale difference
constant that has no impact on the overall energy falloff measure
in Eq. (7). Only the finest two scales are employed here not only
to simplify the energy falloff evaluation, but also because these are
usually the scales with the strongest distortions. The overall energy
falloff distortion measure is defined as

DF =
1

No

No∑
o=1

max

{
F o
d

F o
r

− 1, 0

}
, (7)

whereNo is the number of orientations, and F o
d and F o

r are the slope
of energy falloff evaluated at the o-th orientation for the distorted and
reference images, respectively.

Finally, all three distortion components, DS , DK and DF , are
linearly combined to yield an overall distortion measure

D = wSDS + wKDK + wFDF , (8)

where wS , wK and wF are weights assigned to the three compo-
nents, respectively, and wS +wK +wF = 1. Since all three compo-
nents are lower bounded by 0 which is reached when the reference
and distorted images are identical, the combined distortion measure
also possesses the same property.
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Fig. 5. The energy fall-off characteristics of reference and distorted
images.

There are several parameters in the proposed algorithm. A 3-
scale 4-orientation steerable pyramid is applied, thus No = 4 and
M = 12. The weights given to each subband and to each distor-
tion components are obtained empirically. wi are the same for all
subbands at the same scale, and different from the coarsest to the
finest scales by wi = {0.3, 0.6, 0.1}. wS = 0.59, wK = 0.23, and
wF = 0.18, respectively.

4. EXPERIMENTAL RESULTS

The proposed method is compared with 13 well-known and state-
of-the-art objective IQA measures, which include 8 FR (PSNR,
VSNR [5], VIF [4], VIFP [4], SSIM [1], MS-SSIM [2], IW-
SSIM [3], and FSIM [6]), 2 RR (RRIQA [15] and RRED [17]),
and 3 NR (BIQI [18], BRISQUE [19], and NIQE [20]) methods.
In TID2013 database [7], the image denoising dataset contains 125
images, which are created by adding 5-level of independent white
Gaussian noise to 25 reference images and applying BM3D [8] for
denoising. KRCC is calculated between objective quality score and
MOS values from database. In our developed database, for each
image set, we compute the KRCC values between objective scores
and average subjective rankings. The mean and standard deviation
(std) of the KRCC values across all 30 image sets are used as the
criteria to compare different objective IQA measures. Higher mean
KRCC values indicate better correlations with subjective opinions,
and lower std of KRCC values suggest better consistency or stability
of the objective IQA method over different image content.

The test results based on Kendall’s rank-order correlation co-
efficient (KRCC) are summarized in Table 1. Similar results are
obtained when using Spearman rank-order correlation coefficient
(SRCC) as the evaluation criterion. Somewhat surprisingly, PSNR
performs quite reasonably and is slightly better than (or equiva-
lent to) advanced FR IQA methods such as SSIM, MS-SSIM and
VIF. This is in sharp contrast to the test results using other IQA
databases [3, 6], where these advanced methods outperform PSNR
by large margins. It can also be observed that state-of-the-art RR
and NR IQA methods fail to provide useful quality predictions
of denoised images. Overall, the proposed method achieves the
best performance, and its improvement over SSIM and MS-SSIM

Table 1. KRCC performance comparison of objective IQA modes
on our developed database and TID2013 image denoising databset

Quality/Distortion Our database TID2013
Model mean std
PSNR 0.7587 0.1318 0.8089

VSNR [5] 0.7230 0.1789 0.7342
VIF [4] 0.4667 0.2609 0.7234

VIFP [4] 0.7372 0.1456 0.7371
SSIM [1] 0.7205 0.1497 0.7580

MS-SSIM [2] 0.7283 0.1412 0.7836
IW-SSIM [3] 0.7205 0.1598 0.7515

FSIM [6] 0.5371 0.3187 0.7895
RRIQA [15] 0.0002 0.2582 0.6655
RRED [17] 0.5369 0.1979 0.7776
BIQI [18] 0.0329 0.2953 0.2785

BRISQUE [19] 0.1336 0.3659 0.4078
NIQE [20] 0.4102 0.2954 0.4066

Proposed (D) 0.8231 0.1111 0.8148

demonstrates the value of including NSS-based statistical natural-
ness measures. Note that the performance gain of the proposed
method if more pronounced on our database than TID2013 image
denoising dataset. This may be because our database contains more
diverse types of denoising algorithms while TID2013 only includes
BM3D denoised images.

Since there is no sophisticated iterative or search procedures in-
volved in the proposed algorithm, its computational complexity re-
mains low. On an Intel Core2 Duo E8600 computer with 4GB mem-
ory running on 64-bit OS at 3.33GHz, it takes around 1.26 second
for an un-optimized MATLAB implementation of the proposed al-
gorithm to evaluate a 512 × 512 grayscale image. The fast speed
allows it to be easily adopted in practical applications.

5. CONCLUSION AND FUTURE WORK

The current study focuses on the quality assessment aspect of image
denoising. This is an important issue in the validation and optimal
design of image denoising algorithms, but has not been deeply in-
vestigated. We built one of the first databases dedicated to image de-
noising and carried out a subjective test to rank the quality of these
images. Moreover, an objective IQA approach for denoised images
is proposed that combines SSIM-based structural fidelity index with
NSS-based statistical distortion measures. Experimental validation
shows that the proposed algorithm outperforms state-of-the-art IQA
models in terms of correlations with subjective opinions. It is worth
mentioning that classical FR IQA approaches typically concentrate
on predicting the visibility of local deterministic signal differences
or structural distortions, but often overlook the global statistical nat-
uralness of the distorted image. In this sense, the proposed method
contributes to the general methodology of IQA by incorporating sta-
tistical naturalness measures (that are only used by RR and NR ap-
proaches before [21]) into FR IQA, and provides a demonstration of
this approach. In the future, the proposed method may be improved
by incorporating other statistical naturalness models. It may also be
extended to the quality assessment of color image or video denoising
algorithms, or to other image/video processing applications such as
restoration, enhancement and compression.
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