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ABSTRACT

Objective quality assessment of stereoscopic 3D video is a challeng-
ing problem. We carry out a subjective test on symmetrically and
asymmetrically compressed stereoscopic videos followed by differ-
ent levels of low-pass filtering. We observe a strong systematic bias
when using direct averaging of 2D video quality of both views to
predict 3D video quality. We use a binocular rivalry inspired model
to account for the prediction bias, leading to significantly improved
quality estimation of stereoscopic videos. The model allows us to
quantitatively predict the potential coding gain of asymmetric video
compression, and provides new insight on the development of high
efficiency 3D video coding schemes.

Index Terms— video quality assessment, stereoscopic video,
3D video, asymmetric compression, HEVC

1. INTRODUCTION

With the fast development of 3D acquisition, communication, pro-
cessing and display technologies, automatic quality assessment of
3D images and videos has become ever important. Objective qual-
ity assessment of stereoscopic images/videos is a challenging prob-
lem [1], especially when the distortions are asymmetric, i.e., when
there are significant variations between the types and/or degrees of
distortions occurred in the left- and right-views. Recent subjective
studies suggested that in the case of symmetric distortions of both
views, simply averaging state-of-the-art 2D image quality assess-
ment (IQA) measures of both views is sufficient to provide reason-
ably accurate image quality predictions of stereoscopic images. In
particular, in [2], it was shown that averaging PSNR, SSIM [3], MS-
SSIM [4], UQI [5] and VIF [6] measurements of left- and right-
views performs equally well or better than the advanced 3D-IQA
or 3D video quality assessment (VQA) models [7, 8, 9, 10, 11, 12]
on LIVE 3D Image Database Phase I. Similar results were also ob-
served in [13], where averaging SSIM and MS-SSIM measurements
of both views outperformed advanced 3D-IQA models [7, 9, 10, 14]
on LIVE 3D Image Database Phase II. Compared with the case
of symmetric distortions, quality assessment of asymmetrically dis-
torted stereoscopic images is much more challenging. In [13], it was
reported that there is a large drop in the performance of both 2D-
IQA and 3D-IQA models from quality predictions of symmetrically
to asymmetrically distorted stereoscopic images on LIVE 3D Image
Database Phase II. On the other hand, our previous work [15, 16] re-
vealed a strong distortion type dependent prediction bias when pre-
dicting quality of asymmetrically distorted stereoscopic images from
single-views.

Studying the impact of asymmetric distortions on the quality
of stereoscopic images/videos not only has scientific values in un-
derstanding the human visual system, but is also desirable in the
practice of 3D video compression and transmission. The distortions

involved in 3D video coding/communication are not only compres-
sion artifacts. The practical encoder/decoder also needs to decide
on whether deblocking filters need to be turned on, and whether
mixed-resolutions of the left/rightviews should be used. Mixed-
resolution coding, asymmetric transform-domain quantization cod-
ing, and postprocessing techniques (deblocking or blurring) may
be employed individually or collectively. Previously, the extent of
the downsampling ratio that can be applied to a low quality view
without a noticeable degradation on 3D quality has been investi-
gated [17, 18, 19, 20]. In [19], symmetric stereoscopic video coding,
asymmetric quantization coding and mixed-resolution coding have
been compared and the results suggested that mixed-resolution cod-
ing achieves the best coding efficiency. However, in the literature,
systematic studies on subjective and objective quality assessment of
asymmetrically distorted videos are still lacking, making it difficult
to directly compare different coding strategies, nor to derive 3D-
VQA models that have the potential to be generalized to the case of
mixed distortion types and levels to guide asymmetrical 3D video
coding.

In this work, we first carry out a subjective quality assessment
experiment on a database that contains both symmetrically and
asymmetrically compressed stereoscopic videos, as well as videos
undergone postprocessing by different levels of Gaussian low-pass
filtering. We observe a strong systematic bias when using direct
averaging of 2D video quality of both views to predict 3D video
quality. We then apply a binocular rivalry inspired model to account
for the prediction bias, leading to significantly improved quality esti-
mation of stereoscopic videos. The model allows us to quantitatively
predict the potential coding gain of asymmetric video compression,
and provides new insight on the development of high efficiency 3D
video coding schemes.

2. SUBJECTIVE STUDY

The new Waterloo-IVC 3D Video Quality Database Phase I is cre-
ated from 4 pristine multi-view 3D videos, i.e., Balloons, Book,
Kendo and Lovebird, which are commonly used 3D HEVC testing
sequences. The details of the test videos are given in Table 1. The
format of all videos is YUV4:2:0. Each single-view video was com-
pressed using an HEVC encoder by five levels of transform-domain
quantization with QP = {25, 35, 40, 45, 50} in low-delay main pro-
file. The single-view videos are employed to generate compressed
stereoscopic videos, either symmetrically or asymmetrically. There
are 11 different kinds of combinations as listed in Table 3. The lower
and higher QP views are assigned to the left-view or the right-view
randomly. Moreover, for each QP combination, four levels of Gaus-
sian low-pass filtering with σ = {0, 3.5, 7.5, 11.5} are applied to
the higher QP (lower quality) views. Altogether, there are totally
176 3D videos in the database.

There are two important features of the current database when

3427978-1-4799-8339-1/15/$31.00 ©2015 IEEE ICIP 2015

IEEE International Conference on Image Processing, Quebec City, Canada, Sep. 2015.



Table 1. Details of the test videos
Resolution Length Frames/Second Views

Book 1024×768 6s 16.67 View 6 & View 8
Balloons 1024×768 10s 30.00 View 1 & View 3
Kendo 1024×768 10s 30.00 View 1 & View 3

Lovebird 1024×768 10s 30.00 View 4 & View 6

compared with existing publicly known 3D-VQA databases. First,
the current database contains both symmetrically and asymmetri-
cally compressed stereoscopic videos with various QP combinations,
which allows us to directly examine the impact of asymmetric com-
pression [21, 22, 23]. Second, the current database contains asym-
metrically compressed stereoscopic videos followed by different lev-
els of low-pass filtering, which allow us to study the combined effect
of asymmetric compression and postprocessing [24].

The subjective test was conducted in the Lab for Image and Vi-
sion Computing at University of Waterloo. The test environment has
no reflecting ceiling walls and floor, and was not insulated by any
external audible and visual pollution. An ASUS 27” VG278H 3D
LED monitor with NVIDIA 3D VisionTM2 active shutter glasses is
used for the test. The default viewing distance was 3.5 times the
screen height. In the actual experiment, some subjects did not feel
comfortable with the default viewing distance and were allowed to
adjust the actual viewing distance around it. The details of the view-
ing conditions are given in Table 2. Twenty-two näive subjects, 12
males and 10 females aged from 22 to 35, participated in the study.
A 3D vision test was conducted first to verify their ability to view
stereoscopic 3D content and no one failed the vision test. As a result,
a total of twenty-two subjects proceeded to the formal test. While a
visual acuity test was not performed in this study, a verbal confirma-
tion was obtained prior to the experiment and subjects were asked to
use their eyeglasses or contact lenses to correct their visual acuities.

Table 2. Viewing conditions of the subjective test
Parameter Value Parameter Value

Subjects Per Monitor 1 Screen Resolution 1920 × 1080
Screen Diameter 27.00” Viewing Distance 45.00”

Screen Width 23.53” Viewing Angle 29.3◦

Screen Height 13.24” Pixels Per Degree 65.5 pixels

The subjects were asked to evaluate their overall 3D viewing
experience − 3D Video Quality (3DVQ) in this study. Since to vi-
sualize every 3D stereoscopic video, the subjects need to readjust
their eyes so as to adapt to the content of the scene and establish 3D
perception, using a double stimulus approach leads to interruptions
of the viewing experience. To reduce this effect, we chose to use
the single stimulus procedure using an 11-grade numerical categor-
ical scale (SSNCS) protocol. A general introduction was given at
the beginning of the whole test, and more specific instructions and
training session were given afterwards. The rating strategy was in-
troduced and the subjects were required to rate training videos until
they fully understood the criteria and the strategy. We use three types
of videos in the training phase: pristine videos, moderately com-
pressed videos, and highly-compressed videos. The subjects were
told to give scores at the high end (close to 10 pts) to the pristine
videos, at the mid-range to the moderately compressed videos, and
at the low end (close to 0 pts) to the highly-compressed videos.

In the formal test, all stimuli were shown once. The order of
stimuli was randomized and the consecutive testing stereoscopic
videos were from different source contents. Around 60 stereoscopic
videos were evaluated in one session. Each session was controlled
to be within 20 minutes and sufficient relaxation periods (5 minutes

or more) were given between sessions. Moreover, we found that
repeatedly switching between viewing 3D videos and grading on
a piece of paper or a computer screen is a tiring experience. To
overcome this problem, we asked the subject to speak out a score
between 0 and 10, and a customized graphical user interface on
another computer screen was used by the instructor to record the
score. All these efforts were intended to reduce visual fatigue and
discomfort of the subjects.

3. KEY OBSERVATIONS

The raw 3DVQ scores given by each subject were converted to Z-
scores and the mean opinion scores (MOS) for each 3D video was
then computed.

Given the subjective data, the first question we would like to
ask in the current paper is how single-view 2D video quality pre-
dicts 3D video quality, especially for the case of asymmetrically dis-
torted 3D videos. The most straightforward 2D-to-3D quality pre-
diction method is to average the qualities of the left- and right-view
videos. Table 4 reports Spearman’s rank-order correlation coeffi-
cient (SRCC) between 3D MOS and the average of 2D-IQA/VQA
predictions including PSNR, SSIM, MS-SSIM, IW-SSIM [25], and
VQM [26] by different test groups. Higher SRCC value indicates
better consistency with human opinions of quality. From Table 4, it
can be observed that accurate predictions are obtained in the cat-
egory of symmetrically compressed 3D videos. By contrast, the
performance drops significantly for asymmetrically compressed 3D
videos. In [15, 16], we reported that for JPEG compression, av-
erage prediction overestimates 3D quality (or 3D quality is more
affected by the poorer quality view). More importantly we found
that for blockiness, the bias of the averaging prediction model in-
creases with the level of distortions, and thus whether the bias is
pronounced depends on the quality range being investigated. With
respect to blockiness created from HEVC compression, this overes-
timated prediction bias is still pronounced, but not as strong as JPEG
compression, which is probably due to the reduction of blocking ar-
tifacts in HEVC.

From Table 4, it can be observed that the direct averaging model
performs well for 3D videos without postprocessing (by Gaussian
blurring). By contrast, the SRCC values drop significantly for videos
with postprocessing. The left column of Fig. 1 shows the corre-
sponding scatter plots, where the simple averaging prediction model
generates substantial bias on many stereoscopic videos. In [15, 16],
we reported that for blurriness, average prediction often underesti-
mates 3D quality (or 3D quality is more affected by the better qual-
ity view). Here the same kind of prediction bias is clearly observed
as direct averaging of state-of-the-art 2D-IQA/VQA metrics always
underestimates 3D video quality for these post-processed videos.

The second question we would like to ask is how the Gaussian
low-pass post-filtering affects the perceptual 3D quality of asymmet-
rically compressed stereoscopic videos. Table 3 reports 3D MOS
changes after applying different levels of Gaussian low-pass filter-
ing with respect to different QP combinations and different blurring
levels. From Table 3, it can be observed that for symmetrically com-
pressed 3D videos, blurring reduces perceptual 3D video quality in
most cases. By contrast, for asymmetrically compressed 3D videos,
blurring on the higher QP (lower quality) views improves the per-
ceptual 3D video quality in almost all cases. Generally, the improve-
ment increases with the level of blurring and with the difference
between QPl and QPh. This preliminary analysis verifies that the
adoption of certain postprocessing techniques such as blurring could
improve the efficiency of stereoscopic video coding.
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Fig. 1. 3D MOS versus predictions from 2D PSNR, SSIM, MS-
SSIM, IW-SSIM, and VQM of single-views. Left column: direct
averaging of left- and right-views; Right column: proposed weight-
ing scheme.

Table 3. 3D MOS changes after applying different levels of Gaus-
sian blurring as postprocessing

QPl QPh σ = 0 σ = 3.5 σ = 7.5 σ = 11.5 Average
25 25 0.00% -12.50% -18.43% -12.72% -14.55%
25 35 0.00% -1.72% -4.07% -0.78% -2.19%
25 40 0.00% +12.43% +10.12% +10.82% +11.12%
25 45 0.00% +3.63% +30.22% +25.60% +19.82%
25 50 0.00% +45.30% +90.79% +80.56% +72.22%
35 35 0.00% +0.47% - 9.82% -5.78% -5.04%
35 45 0.00% +30.20% +31.83% +41.35% +34.46%
35 50 0.00% +38.53% +82.64% +98.89% +73.35%
40 40 0.00% -5.86% +1.68% -1.80% -1.99%
40 50 0.00% +29.01% +63.15% +73.84% +55.33%
50 50 0.00% +31.67% +17.92% -13.75% +11.95%

Average 0.00% +15.56% +26.91% +26.93% +23.13%

(a) Kendo

(b) Lovebird

Fig. 2. R-D performance comparison in terms of 3D MOS.

In addition, the rate-distortion (R-D) performance in terms of
the 3D MOS for the symmetric compression without postprocessing
and asymmetric compression with postprocessing is demonstrated
in Fig. 2. It can be observed that a significant bit rate reduction
is achieved for the asymmetric compression with postprocessing
method, which further verifies the effectiveness of asymmetric
compression with postprocessing in improving the efficiency of
stereoscopic video coding.
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Table 4. SRCC Performance comparison of 2D-to-3D quality prediction models on Waterloo-IVC 3D video database
Method Sym. Compress. Asym. Compress. No Postprocess. With Postprocess. Direct Average Proposed Weighting
PSNR 0.9543 0.8226 0.8799 0.6469 0.5469 0.8100
SSIM 0.9470 0.7960 0.9063 0.2668 0.3128 0.8531

MS-SSIM 0.9470 0.7990 0.9049 0.2727 0.3209 0.8453
IW-SSIM 0.9617 0.9017 0.9529 0.3129 0.2961 0.8870

VQM 0.9529 0.8283 0.8953 0.7103 0.6463 0.8378

4. 2D-TO-3D QUALITY PREDICTION METHOD

Let (Ii,r,l, Ii,r,r) and (Ii,d,l, Ii,d,r) be the i-th left and right
frames of the reference and compressed stereoscopic videos, re-
spectively. We first create their local energy maps by computing
the local variances at each spatial location, i.e., the variances of
local image patches extracted around each spatial location, for
which an 11 × 11 circular-symmetric Gaussian weighting function
w = {wi|i = 1, 2, · · · , N} with standard deviation of 1.5 samples,
normalized to unit sum (

∑N
i=1 wi = 1), is employed. The result-

ing energy maps are denoted as Ei,r,l, Ei,r,r , Ei,d,l and Ei,d,r ,
respectively. We then compute the local energy ratio maps in both
views:

Ri,l =
Ei,d,l

Ei,r,l
and Ri,r =

Ei,d,r

Ei,r,r
. (1)

The energy ratio maps provide useful local binocular rivalry infor-
mation, which may be combined with the qualities of single-view
images to predict 3D image quality. A pooling stage is necessary for
this purpose. High-energy image regions are likely to contain more
information content. If the ultimate goal of visual perception is to
efficiently extract useful information from the visual scene, then the
high-energy regions are more likely to attract visual attention, and
thus should be given more importance. To emphasize on the impor-
tance of high-energy image regions in binocular rivalry, we adopt an
energy weighted pooling method [27] given by

gi,l =

∑
Ei,d,lRi,l∑
Ei,d,l

and gi,r =

∑
Ei,d,rRi,r∑
Ei,d,r

, (2)

where the summations are over the full energy and ratio maps. Here
gi,l and gi,r are estimations of the level of dominance of the i-th left
and right frames, respectively. Given the values of gi,l and gi,r , the
weights assigned are given by

wi,l =
g2i,l

g2i,l + g2i,r
and wi,r =

g2i,r
g2i,l + g2i,r

, (3)

respectively. The prediction of 3D image quality of the i-th frame is
calculated by a weighted average of the left- and right-view image
quality:

Q3D
i = wi,lQ

2D
i,l + wi,rQ

2D
i,r , (4)

where Q2D
i,l and Q2D

i,r denote the 2D image quality of the left and the
right frames, respectively. Finally, the overall prediction of 3D video
quality is calculated by averaging the prediction of each frame:

Q3D =
1

N

N∑
i=1

Q3D
i , (5)

whereN denotes the frame number of the entire 3D video sequence.
In the case of the frame-based video quality assessment method

is not available (for example, VQM [26] is not producing frame-level
quality scores), the level of dominance can be estimated with respect
to the entire video sequence:

gl =
1

N

N∑
i=1

gi,l and gr =
1

N

N∑
i=1

gi,r , (6)

where gl and gr denote the level of dominance of the left- and right-
view, respectively. Given the values of gl and gr , the weights as-
signed to the left- and right-view videos are given by

wl =
g2l

g2l + g2r
and wr =

g2r
g2l + g2r

, (7)

respectively. Similarly, the overall prediction of 3D video quality is
calculated by

Q3D = wlQ
2D
l + wrQ

2D
r , (8)

where Q2D
l and Q2D

r denote the 2D video quality of the left- and
right-view videos, respectively.

The proposed 2D-to-3D quality prediction model is tested on all
3D videos in the new database. The SRCC values between 3D MOS
and the predictedQ3D value are given in Table 4. The corresponding
scatter plots are shown in the right column of Fig. 1. From Table 4
and Fig. 1, it can be observed that the proposed model outperforms
the direct averaging method significantly with respect to all tested
2D-IQA/VQA approaches. For different levels of compressions and
Gaussian blurring, the proposed method, which does not attempt to
recognize the distortion types or give any specific treatment, removes
or significantly reduces the prediction biases. It is worth noting that
with respect to PSNR, SSIM, MS-SSIM and IW-SSIM, both frame-
based and sequence-based weighting are tested and the performance
in each case is quite similar. Thus Table 4 and Fig. 1 are reported us-
ing the sequence-based weighting results, making it consistent with
the VQM case which does not allow for frame-based weighting.

5. CONCLUSION AND DISCUSSION

The major contributions of the current paper are as follows: First, we
create a new subjective 3D-VQA database and carry out a subjective
test on symmetrically and asymmetrically compressed stereoscopic
videos followed by different levels of low-pass filtering. Second,
we observe a strong systematic bias when using direct averaging of
2D video quality of both views to predict 3D video quality. Third,
we use a binocular rivalry inspired model to account for the pre-
diction bias, leading to significantly improved quality estimation of
stereoscopic videos. The model allows us to quantitatively predict
the potential coding gain of asymmetric video compression.

Asymmetric and mixed-resolution coding has been hypothe-
sized to be able to significantly reduce the required bandwidth in
transmitting stereoscopic 3D videos, but subjective and objective
quality assessment studies that support the hypothesis is lacking
in the literature. Our current work is in favor of this hypothesis,
but how mixed-resolutions of the left/right-views should be used
and how to control deblocking and postprocessing filters are yet to
be further investigated. We are currently building WATERLOO-
IVC 3D Video Quality Database Phase II, which includes various
stereoscopic 3D videos obtained from mixed-resolution coding,
asymmetric transform-domain quantization coding, their combi-
nations, and multiple choices of postprocessing techniques. More
detailed descriptions will be reported in our future publications.
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