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ABSTRACT

Blind image quality assessment (BIQA) has attracted a great
deal of attention due to the increasing demand in industry
and the promising recent progress in academia. To bridge
the gap between academic research accomplishment and in-
dustrial needs, high efficiency BIQA approaches that allow
for real-time computation are highly desirable. In this pa-
per, we propose a novel BIQA method by selecting statistical
features extracted from binary patterns of local image struc-
tures. This allows us to largely reduce the feature space to
eventually one dimension. Somewhat surprisingly, such a sin-
gle feature, faster-than-real-time approach named local pat-
tern statistics index (LPSI) exhibits impressive generalization
ability across different distortion types and achieves competi-
tive quality prediction performance in comparison with state-
of-the-art approaches on public databases such as LIVE II and
TID2008.

Index Terms— Image quality assessment, blind image
quality assessment, local binary pattern.

1. INTRODUCTION

No-reference or blind image quality assessment (BIQA) ap-
proaches predict perceived quality of a test image without ref-
erencing to an original image that is assumed to have pris-
tine quality [1]. BIQA has become an active research area in
the past few years due to the high demand in real-world ap-
plications and the significant research progress that has been
made recently [2, 3, 4, 5, 6, 7]. BIQA is highly challeng-
ing not only because of the difficulty in accurately estimating
human behaviors in evaluating image quality across different
visual content, distortion types and distortion levels, but also
because real-world applications such as online quality moni-
toring often require the image and video signals to be evalu-
ated at high speed, ideally in real-time. Consequently, there is
a strong practical need of highly efficient BIQA algorithms.

An interesting recent development in BIQA research is
the incorporation of machine learning techniques, which have
resulted in a number of state-of-the-art algorithms that report
highly competitive performance [8, 9, 10, 11, 12]. The de-
velopment of these algorithms basically follows a two-stage
framework —- a feature extraction stage where a large num-

ber of features (possibly in the order of thousands) that are
believed to be possibly relevant to image quality are extracted
from the image, and a machine learning stage where image
examples with different distortion types and levels are em-
ployed to train a quality prediction model. There are three
limitations of this general approach. First, because of the
high dimensionality of the feature space and the high com-
plexity of the machine learning model, it is hard to deduce
the actual contributions of individual features in the complete
model, making it difficult to obtain a better understanding re-
garding human visual perception. Second, regardless of the
performance on the training set, the generalization capabil-
ity of these approaches is largely constrained by the training
image samples, which live in an extremely high dimensional
space (the space of all possible images) where it is difficult to
justify how many samples are sufficient. Third, the large num-
ber of features require significant computation and storage re-
sources, making them too slow and expensive in real-world
applications. A recent study on opinion-free (OF) BIQA [13]
has made an interesting attempt to avoid the supervised learn-
ing process and demonstrated great potentials, though its nat-
ural scene statistics (NSS) feature extraction process impedes
it from real-time implementations.

In this paper, we aim to develop highly efficient method
for BIQA that avoids any training process but delivers good
generalization capability. Such an approach belongs to the OF
category and relies heavily on the features being employed.
In [14], Ojala et al. introduced an efficient local structural
information descriptor named local binary pattern (LBP). By
encoding the signs of the differences between a central pixel
and its neighbors, the complex local structure is summarized
by one of a limited set of binary patterns. By making use of
LBP as the basis for our local feature extraction and modi-
fying upon the statistics built on top of it, we obtain a hand-
ful of statistics on local image patterns. Careful inspection of
these patterns on a large number of images suggests that some
of them have significant discriminating power between high
quality natural images and distorted ones. Somewhat surpris-
ingly, we show that even by picking the statistic of one of the
patterns, we can obtain a BIQA measure that is competitive
with state-of-the-art approaches. Experiments with LIVE II
and TID2008 databases demonstrate impressive generaliza-
tion capability of such a training-free method.
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2. PROPOSED METHOD

Let gi and gp denote the gray levels of the ith pixel and its
circularly symmetric neighbor in an image, respectively. Let
t(·) be the step function

t(x) =

{
1, x ≥ 0

0, x < 0
. (1)

Then the uniform rotation invariant LBP code of the ith pixel
can be expressed as

LBPP,R(i) =

{∑P−1

p=0
t(gp − gi), if U

(
LBPP,R(i)

)
≤ 2

P + 1, otherwise
,

(2)
where the subscripts P and R represent the neighbors’ num-
ber and radius, respectively. U(·) denotes the discontinuities
of the circular binary presentation [14]

U
(
LBPP,R(i)

)
=|t(gP−1 − gi)− t(g0 − gi)|

+
P−1∑
j=1

|t(gj − gi)− t(gj−1 − gi)|.
(3)

Instead of using the equal voting scheme in accumulat-
ing the LBP code at each pixel [14], we employ a locally
weighted scheme to refine the statistics. First, we normalize
the gray level in the image by

ĝi =
gi − gmin

gmax − gmin

, (4)

where ĝi denotes the normalized gray level. gmax and gmin

are the max and min gray values in the input image. We then
compute the local variance σ2

i at each pixel, and the vote of
the pixel belonging to the LBP code l is computed by

vl(i) =
Il
(
LBPP,R(i)

)
σ2

i + c
, (5)

where c is a small constant to avoid instability. Il(·) is the
indicator function

Il
(
LBPP,R(i)

)
=

{
1, if LBPP,R(i) = l

0, otherwise
. (6)

LetN be the number of the pixels in an image. The locally
weighted statistic for the LBP code l is obtained by

sl =
1

N

N∑
i=1

vl(i), (7)

The dynamic range of sl is [0,+∞). To facilitate obser-
vation, we scale the sl to [0,1) using a monotonic nonlinear
mapping

ŝl =
sl

sl + α
, (8)

(a) l = 0 (b) l = 1 (c) l = 2

(d) l = 3 (e) l = 4 (f) l = 5

Fig. 1. Diagram of the local structures for LBP4,1. The cen-
tral pixel is labeled as a gray circle. The black and white
circles denote the neighbors which have lower and larger in-
tensities than the central pixel, respectively.

where α is a constant used to adjust the nonlinearity of the
mapping. In the extreme case, when sl equals to 0, ŝl be-
comes 0. At the other extreme, when sl � α, ŝl approximates
1.

As mentioned earlier, we aim for high efficiency BIQA
method whose complexity is as low as possible. Thus, we
only use four neighbors to compute the LBP codes (i.e.,
LBP4,1) at each pixel, resulting in six distinct binary patterns
[14]. The diagram of all possible LBP structures with four
neighbors are shown in Fig. 1.

To investigate the discriminant ability of ŝl, we select
1000 high quality natural images from the VOC2012 database
[15]. Four types of common distortions are simulated, i.e.,
JP2K, JPEG, WN and Blur. For each distortion type, we
introduce five distortion levels, whose SSIM [16] scores are
approximately {0.7, 0.75, 0.8, 0.85, 0.9}, respectively. As
such, we obtain 5000 distorted images for each distortion
type. For clarity, the ŝl distributions across all natural images
and their distorted versions are shown in Fig. 2, where the
labels on the left denote the distortion type and those on the
top denote our statistics for specific binary patterns. Overall,
ŝ0 presents the smallest histogram intersections for most dis-
tortion types. In addition, it is interesting to find that natural
images’ ŝ0 concentrate on a very narrow range between 0.9
to 1. By contrast, the ŝ0 values of the degraded images span
a larger dynamic range, and are typically smaller than 0.9.
Following the criterion in [17], the ŝl histogram intersection
K⋂(·, ·) between the natural images and their degraded ones
is used to measure the discriminant ability of each ŝl

K⋂(hl
r, h

l
d) =

n∑
i=1

min
(
hl
r(i), h

l
d(i)

)
, (9)
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Fig. 2. Local pattern statistics of high quality natural images and distorted images.

where hl
r and hl

d denote the normalized ŝl histograms of the
natural images and their distorted versions, respectively. A
smallerK⋂(hl

r, h
l
d) indicates a better ability in differentiating

distorted images from natural images.
The histogram intersections for each ŝl across different

distortion types are shown in Table 1, where the smallest
K⋂(hl

r, h
l
d) in each row is highlighted by boldface. It can

be seen that the statistic ŝ0 presents the best discriminant
ability for JP2K, JPEG and Blur. When we mix the degraded
samples across all four distortion types, ŝ0 also achieves the
smallest histogram intersection, as shown in the last row of
Table 1. Based on this observation, we select only one di-
mension statistic ŝ0 and define Q = ŝ0 as our local pattern
statistics index (LPSI).

3. EXPERIMENTAL RESULTS

We test the performance of the BIQA algorithms on LIVE II
database [18], which includes 5 distortion types (i.e., JP2K,
JPEG, WN, Blur, FF) and 779 distorted images. Since our
experiment involves several opinion-aware (OA) BIQA meth-
ods which require training, we randomly divide the LIVE II

Table 1. Histogram intersection of ŝl between the natural
images and their distorted versions.

database into two non-overlapping subsets for training and
testing. Particularly, we use 23 of the 29 reference images and
their distorted versions as the training set, and the remaining
images constitute the testing set. We repeat this random split-
ting procedure 1000 times on the LIVE II database. The me-
dian Spearman’s rank order correlation coefficient (SROCC)
between the predicted quality and the DMOS across 1000 tri-
als is used to evaluate a BIQA metric. Both the OA-BIQA
(BIQI [2], BLINDS-II [5], BRISQUE [6] and CORNIA [7])
and OF-BIQA (NIQE [13]) metrics are included in this com-
parison.

The median SROCC results are reported in Table 2, where
the best metric in each column is highlighted by boldface.
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Table 2. SROCC performance on the LIVE II database
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Fig. 3. The scatter plot of the predicted quality vs. the ground-
truth subjective quality on LIVE II database. The x-axis de-
notes the predicted quality Q and y-axis denotes the DMOS.

The proposed LPSI algorithm, which only employs a sin-
gle feature and does not require any training, provides highly
competitive performance, even when comparing with OA al-
gorithms that may involve sophisticated training procedures.
Fig. 3 shows the scatter plot of the LPSI measure against
DMOS for all images in the LIVE II database. It can be seen
that LPSI exhibits a nearly linear relationship with DMOS,
and achieves a reasonable balance across different distortion
types.

To test the generalization capability of different BIQA
metrics, we perform an experiment on the TID2008 database
[19], which includes 17 distortion types and 1700 distorted
images. For all OA-BIQA metrics, we use the entire LIVE
II database to train the quality prediction function. Table 3
presents the SROCC results on the whole TID2008 databases
across 17 distortion types, where the best metric is high-
lighted by boldface. It can be seen that the proposed LPSI
method significantly outperforms all the other BIQA algo-
rithms. It is worth nothing that the performance drops from
LIVE II to TID2008 databases are significantly larger in all
other BIQA algorithms being tested than in the proposed
LPSI method, which, unlike all the OA methods, does not in-
volve any training process. This demonstrates that LPSI has
better generalization capability than existing BIQA methods.

Table 3. SROCC performance on the TID2008 database.

Table 4. Comparison of average running time (seconds)

We use program running time as a rough estimate of com-
putational complexity. We compare the average running time
for an image on LIVE II and TID2008 databases, respec-
tively. The system platform is Intel Core 2 processor of speed
2.0GHz, 6GB RAM and Windows 7 64-bit version. All meth-
ods are tested with the MATLAB2013a software. The results
are presented in Table 4, where the fastest results are high-
lighted by boldface in each row. Since the proposed measure
only needs to compute a simple one dimension statistic, it is
much faster than all existing BIQA algorithms, allowing it to
be easily extended to real-time applications.

4. CONCLUSION

We propose a highly efficient BIQA approach based on statis-
tics of local binary patterns. The proposed LPSI algorithm
eventually uses a single feature and does not involve any train-
ing process, but exhibits surprisingly good performance and
generalization capability in comparison with state-of-the-art
BIQA algorithms. We believe these are critical properties
that are essential in real-world online image and video quality
monitoring applications.

5. REFERENCES

[1] Zhou Wang and A.C. Bovik, “Reduced- and no-
reference image quality assessment,” IEEE Signal Pro-
cessing Magazine, vol. 28, no. 6, pp. 29–40, Nov 2011.

[2] A.K. Moorthy and A.C. Bovik, “A two-step framework
for constructing blind image quality indices,” IEEE Sig-
nal Process. Lett., vol. 17, no. 5, pp. 513–516, 2010.

[3] A. K. Moorthy and A. C. Bovik, “Blind image quality
assessment: From natural scene statistics to perceptual
quality,” IEEE Transactions on Image Processing, vol.
20, no. 12, pp. 3350–3364, Dec. 2011.

[4] Tsung-Jung Liu, Weisi Lin, and C.-C.J. Kuo, “Image
quality assessment using multi-method fusion,” IEEE
Transactions on Image Processing, vol. 22, no. 5, pp.
1793–1807, May 2013.

342



[5] M. Saad, A. C. Bovik, and C. Charrier, “Blind image
quality assessment: A natural scene statistics approach
in the DCT domain,” IEEE Trans. Image Process., vol.
21, no. 8, pp. 3339–3352, Aug. 2012.

[6] A. Mittal, A.K. Moorthy, and A.C. Bovik, “No-
reference image quality assessment in the spatial do-
main,” IEEE Trans. Image Process., vol. 21, no. 12,
pp. 4695–4708, Dec 2012.

[7] Peng Ye, J. Kumar, Le Kang, and D. Doermann, “Un-
supervised feature learning framework for no-reference
image quality assessment,” in IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), June 2012, pp.
1098–1105.

[8] Chaofeng Li, A.C. Bovik, and Xiaojun Wu, “Blind im-
age quality assessment using a general regression neural
network,” IEEE Transactions on Neural Networks, vol.
22, no. 5, pp. 793–799, 2011.

[9] Lihuo He, Dacheng Tao, Xuelong Li, and Xinbo Gao,
“Sparse representation for blind image quality assess-
ment,” in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), June 2012, pp. 1146–1153.

[10] Xinbo Gao, Fei Gao, Dacheng Tao, and Xuelong Li,
“Universal blind image quality assessment metrics via
natural scene statistics and multiple kernel learning,”
IEEE Transactions on Neural Networks and Learning
Systems, vol. 24, no. 12, pp. 2013–2026, Dec 2013.

[11] Le Kang, Peng Ye, Yi Li, and D. Doermann, “Convo-
lutional neural networks for no-reference image qual-
ity assessment,” in IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), June 2014, pp. 1733–
1740.

[12] Huixuan Tang, Neel Joshi, and Ashish Kapoor, “Blind
image quality assessment using semi-supervised recti-
fier networks,” in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2014, pp. 2877–2884.

[13] A. Mittal, R. Soundararajan, and A.C. Bovik, “Mak-
ing a “completely blind” image quality analyzer,” IEEE
Signal Process. Lett., vol. 20, no. 3, pp. 209–212, March
2013.

[14] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multireso-
lution gray-scale and rotation invariant texture classifi-
cation with local binary patterns,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, 2002.

[15] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object
Classes Challenge 2012 (VOC2012) Results,” http:
//www.pascal-network.org/challenges/
VOC/voc2012/workshop/index.html.

[16] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simon-
celli, “Image quality assessment: from error visibility to
structural similarity,” IEEE Trans. Image Process., vol.
13, no. 4, pp. 600–612, April 2004.

[17] K. Grauman and T. Darrell, “The pyramid match ker-
nel: discriminative classification with sets of image fea-
tures,” in IEEE Int. Conf. on Computer Vision (ICCV),
Oct 2005, vol. 2, pp. 1458–1465.

[18] H. R. Sheikh, Z. Wang, L. Cormack, and A. C. Bovik,
LIVE Image Quality Assessment Database Release 2,
[Online]. Available: http://live.ece.utexas.
edu/research/quality.

[19] N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian,
M. Carli, and F. Battisti, “TID2008 - a database for eval-
uation of full-reference visual quality assessment met-
rics,” Advances of Modern Radioelectronics, vol. 10,
pp. 30–45, 2009.

343




