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ABSTRACT

High dynamic range (HDR) imaging techniques aim to ex-
tend the dynamic range of images that cannot be well cap-
tured using conventional camera sensors. A common practice
is to take a stack of pictures with different exposure levels and
fuse them to produce a final image with more details. How-
ever, a small displacement between images caused by either
camera or scene motion would void the benefits and cause
the so-called ghosting artifacts. Over the past decade, many
HDR deghosting algorithms have been proposed, but little
work has been dedicated to evaluate HDR deghosting results
either subjectively or objectively. In this work, we present a
comprehensive subjective study for HDR deghosting. Specif-
ically, we create a database that contains 20 dynamic image
sequences and their corresponding deghosting results by 9
deghosting algorithms. A subjective user study is then car-
ried out to evaluate the perceptual quality of deghosted im-
ages. The experimental results demonstrate the performance
and limitations of existing HDR deghosting algorithm as well
as no-reference image quality assessment models. We will
make the database available to the public.

Index Terms— High dynamic range imaging, HDR
deghosting, subjective quality assessment.

1. INTRODUCTION

Natural scenes often span a greater dynamic range of lumi-
nance values than those captured by current imaging sensors.
In many practical scenarios, it is desirable to obtain high dy-
namic range (HDR) illumination in the real-world [1]. During
the past decade, various HDR imaging techniques have been
developed. A common approach shared by them is to capture
multiple pictures with different exposure levels of the same
scene and then reconstruct an HDR image by inverting the
camera response function. Through tone mapping operators
[2], the dynamic range of HDR images is reduced to facili-
tate display on devices with low dynamic range (LDR). On
the other hand, multi-exposure image fusion (MEF) is con-
sidered as an effective alternative for HDR imaging. Taking
the same sequence as input, MEF algorithms directly synthe-
size an LDR image that is more informative and perceptually
appealing than any of the input images [3].

(a) Source image sequence of Fabrizio Pece [9]

(b) Pece10 [9] (c) SPD-MEF [16]

Fig. 1. Ghosting artifacts due to camera or object motion.

A major problem of most computational HDR imaging
and MEF algorithms is that a small displacement between im-
ages by either camera or scene motion would void the bene-
fits from fusion and cause the so-called ghosting artifacts, as
shown in Fig. 1. In recent years, much effort has been put
to HDR deghosting for dynamic scenes. With many HDR
deghosting algorithms proposed, it becomes increasingly im-
portant to evaluate the visual quality of deghosting results
both qualitatively and quantitatively. Since the human vi-
sual system (HVS) is the ultimate receiver of visual informa-
tion in most applications, subjective evaluation is an effective
approach to understand the human behaviors when viewing
deghosted images. Although it is expensive and time consum-
ing [4, 5], subjective quality assessment has several benefits.
First, it provides useful data to study human behaviors in eval-
uating the perceived quality of deghosted images. Second, it
supplies a benckmark to compare the performance of state-
of-the-art HDR deghosting algorithms. Third, it is useful to
validate and compare the performance of existing and future
objective image quality assessment (IQA) models in predict-
ing the perceptual quality of deghosted images. This will in
turn provide insights on developing effective IQA methods
for HDR deghosting.

There had been some investigations on the performance
of deghosting methods [6]-[8]. Unfortunately, only a small
set of images and limited HDR deghosting algorithms are in-
volved. These results become less relevant with many new al-
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Fig. 2. Source image sequences. Each sequence is presented by one deghosted image, which has the best quality in the
subjective test.

gorithms being proposed recently. This motivates us to carry
out a large-scale subjective test in order to analyze classic and
up-to-date HDR deghosting algorithms in depth. A database
containing 20 source sequences with multiple exposure lev-
els (≥ 3) is constructed in this study. Nine HDR deghosting
algorithms are adopted to generate deghosted images, with
the most recent one developed in 2016. A large-scale sub-
jective test is carried out to compare the visual quality of
deghosted images using a paired comparison methodology.
We observe a considerable consensus among observers re-
garding the quality evaluation of deghosting results. The nine
HDR deghosting algorithms are analyzed in depth based on
their design philosophies. In addition, we show that state-of-
the-art image quality assessment (IQA) methods are limited
in predicting the perceptual quality of deghosted images. We
believe all these findings are meaningful for the future devel-
opment of HDR deghosting.

2. THE DATABASE

We collect a set of image sequences covering a variety of im-
age content and motion. Since camera motion is usually small
and relatively uniform in practice, we only consider various
objection motion and counteract the camera motion by either
setting a tripod or some image registration algorithms. In
other words, all source sequences are aligned. Moreover,
the database constitutes sequences with different environ-
ments, including indoor and outdoor scenes, deformable and
non-deformable patterns, noisy and non-noisy scenarios, and
small and large motions. Keeping these considerations in
mind, we collect 20 source sequences, as shown in Fig. 2.

All of them contain at least 3 input images which repre-

Li12 [11] Pece10 [9] Lee14 [13]

Sen12 [10] Photomatix [14] Qin15 [15]

Hu13 [12] Li14 [17] SPD-MEF [16]

Fig. 3. Deghosting results of nine algorithms adopted in the
subjective user study.

sent under-exposed, over-exposed, and in-between cases.
Next, we choose nine state-of-the-art ghost removal al-

gorithms to generate deghosted images, including: Pece10
[9], Sen12 [10], Li12 [11], Hu13 [12], Lee14 [13], Li14 [17],
Photomatix [14], Qin15 [15], and SPD-MEF[16] (Fig. 3).
These methods are chosen to represent a variety of design
philosophies, including pixel-based and path-based, HDR
reconstruction followed by tone mapping and MEF, struc-
tural similarity based and low rank based algorithms. Note
that Photomatix [14] is a commercial HDR software. The



deghosting results are either generated by original authors or
by the code available to the public with the default settings.
As a result, a total of 180 deghosted images are produced.

In the subjective test, the paired comparison method-
ology is employed, where participants are shown with two
deghosted images at the same time, and are asked to choose
the one they prefer. Since the deghosting algorithms op-
erate on an exposure stack rather than a single image like
traditional image processing algorithms, the graphical user
interface (shown in Fig. 4) provides 3 representative LDR
images on the top of the screen as the reference information.
A pair of deghosted images are presented below the source
sequence and the corresponding radio indicates their prefer-
ence. Two identical 24-inch LED monitors are used in the
test, calibrated according to the ITU Recommendation [18].

For each participant, the experiment starts with a training
session, which includes 10 paired comparisons, using image
sequences independent of the testing session. When eval-
uating deghosted images, the participants are instructed to
mainly consider the artifacts and detailed information preser-
vation in deghosted images.

In the testing session, we perform a complete experiment

within each image sequence, which results in 20×
(
9

2

)
=720

pairs in total. We divide the complete experiment into 3 small
sessions, within which each participant compares 240 pairs
of images in 30 minutes in order to mitigate the fatigue effect.
We invite 60 participants with normal or corrected visual acu-
ity, aged from 18 to 40 to the subjective test, each of whom
only conducts one session experiment. As a result, each im-
age pair is compared exactly 20 times. The participants have
no experience in image processing and quality assessment,
among which 20 are female and the rest are male.

3. DATA ANALYSIS

The result for each scene is a preference matrix C, where each
entry is given by

Ci,j =

{
# times option i preferred over option j if i ̸= j

0 if i = j
, (1)

which represents the number of times that each option is pre-
ferred over the other option. The final results obtained by
accumulating the preference matrices for all scenes is shown
in Table 1.

We adopt the statistical data analysis method by Kristi and
Maya [19], which explains the experimental results under the
Thurstones Case V Model [20]. In brief, it assumes that all
options have equal variance and zero correlations (or less re-
strictively, equal correlations [21]). Furthermore, the Thur-
stones Case V Model sets the variances of the binary options,
A and B, to one half σ2

A = σ2
B = 1

2 and the covariance of A

Fig. 4. Graphical user interface in the subjective test.
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Fig. 5. The aggregation results obtained by the four methods.

and B is 1, which simplifies the Thurstone Law to

µAB = ϕ−1
( CA,B

CA,B + CB,A

)
, (2)

where µAB is the quality different from the binary choice and
ϕ−1(x) is the inverse cumulative distribution function (CDF)
of the standard normal function.

We then apply four different approaches including least
squares method, maximum likelihood method, maximum a
posteriori estimation method, and morrissey and Gulliksen’s
incomplete matrix method [22] to aggregate the pairwise
ranking information into a global ranking. The experimen-
tal results are shown in Fig. 5 and Fig. 6, from which we
have several useful observations. First, not a single HDR
deghosting algorithm performs the best for all sequences,
which indicates room for further performance improvement.
Second, SPD-MEF [16] performs the best in general. The
success may be that SPD-MEF [16] takes advantage of both
exposure invariant feature and intensity mapping function
for robust inconsistent motion rejection. Third, patch-based
algorithms such as SPD-MEF [16], Hu13 [12] and Sen12



Algorithm Li12 Lee14 Photomatix Qin15 Pece10 Sen12 Hu13 Li14 SPD-MEF SUM
Li12 0 134 86 68 52 60 52 54 15 521

Lee14 266 0 137 119 141 71 99 73 53 959
Photomatix 314 263 0 189 184 115 108 102 59 1334

Qin15 332 281 211 0 211 143 123 109 52 1431
Pece10 348 259 216 220 0 127 160 117 94 1541
Sen12 340 329 285 257 273 0 157 177 91 1909
Hu13 348 301 292 277 240 243 0 159 111 1971
Li14 346 327 298 291 283 223 241 0 111 2120

SPD-MEF 385 347 341 348 306 309 289 289 0 2614

Table 1. Total aggregate preference matrix in the subjective user study and the total number of preferences of each method.

[10] generally perform better than pixel-based algorithms
such as Pece10 [9], Li12 [11] and Lee14 [13], except for
Li14 [17] that ranks the second. There is no surprise because
patch-based algorithms take neighbouring information into
consideration and result in more robust motion alignment.
Note that Li14 [17], a pixel-based method, also considers
neighbouring pixels in extreme cases to refine the motion
rejection process. Fourth, the low-rank based method, Lee14
[13] is subpar in the test, resulting from the failure of pre-
venting ghosting artifacts, especially on sequences with small
motions. This may be because low rank schemes implic-
itly assume the static background dominates the scene, but
small motions often do not follow the sparsity assumption,
resulting in artifacts. Other methods that explicitly hold the
assumption such as Pece10 [9] and Li12 [11] do not perform
well either. Fifth, besides ghosting artifacts, we find some
other types of distortions that may clearly affect the human
judgements of perceptual quality. For example, halo artifacts
at the boundary of the main subject with a bright background
is the main problem for SPD-MEF [16]. Color speckle noise
due to the inaccurate camera response function estimation
would frequently appear for images generated by Lee14 [13].
In addition, blurring artifacts may be generated if there are
small errors in motion estimation. Finally, in certain extreme
cases, if the moving objects that appear in the final image are
under-/overexposed, and their structures cannot be properly
retrieved from other exposures, the ghosting artifacts would
likely appear, which is a common problem to most existing
deghosting schemes.

Fig. 6. Grouping and ranking for each algorithm according to
the quality scores. The left, the better.

As indicated previously, the subjective quality assess-
ment method is time consuming, laborious, and expensive.
With new HDR deghosting algorithms being proposed, it is
desirable to adopt objective quality models to measure how
well different deghosting algorithms perform, without the

NIQE IL-NIQE QAC
PLCC 0.5985 0.5504 0.5161
SRCC -0.0279 0.2551 -0.0234
RMSE 27.8045 27.8155 29.8785

Table 2. Experimental results by three no-reference image
quality metrics.

need of new subjective experiments. It is difficult to develop
full-reference image quality models for HDR deghosting for
the lack of a well defined reference image. On the other
hand, there exists no no-reference objective quality models
specifically designed for HDR deghosting. Here, we use sev-
eral general purpose no-reference objective quality models to
conduct the experiments based on the subjective test: NIQE
[23], IL-NIQE [24], and QAC [25]. In order to measure how
well these models, we adopt three commonly used metrics:
Pearson linear correlation coefficient (PLCC), Spearman
rank-order correlation coefficient (SRCC), and Root mean
squared error (RMSE). The experimental results are shown in
Table. 2, where it can been seen that PLCC and SRCC values
from these three metrics are relative low, and RMSE values
are high, which demonstrates that these existing models can-
not obtain good performance in performance evaluation of
deghosted images.

4. CONCLUSION AND FUTURE WORK

We create a large-scale database for quality evaluation of
deghosted images. It contains 20 dynamic image sequences,
together with 720 deghosting results by nine state-of-the-art
deghosting algorithms, based on which we conduct a sub-
jective user study. The constructed database with subjective
scores can be used for the benckmark of objective quality
assessment for HDR deghosting in the research community.
We also provide in-depth analysis for the performance of dif-
ferent deghosting algorithms. In the future, we will develop
effective IQA models for quality assessment of deghosted
images.
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