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ABSTRACT

There has been a strong recent trend to improve the perceptual
quality-of-experience of viewers by expanding the spatial resolution,
dynamic range, color gamut, and frame rate of videos. Conceptu-
ally, increasing video frame rate should create a benefit of smoother
perception of motion. However, how to measure motion smooth-
ness is not a well resolved problem. In this study, we measure the
smoothness of motion by examining the local phase correlation of
complex wavelet coefficients along the temporal direction. Our ex-
periments based on subjective-rated databases show that this novel
measure provides a new means to capture the impact of frame rate
on video quality, and demonstrates strong promise at improving the
performance of objective video quality assessment models.

Index Terms— high frame rate, motion smoothness, natural
scene statistics, local phase, video quality assessment, quality-of-
experience, complex wavelet transform.

1. INTRODUCTION

With the technological advances in video acquisition and display
devices, higher frame rate videos of 60 frame-per-second (fps) or
higher are becoming increasingly more popular in recent years. In-
crease in frame rate alongside with increase in resolution or exten-
sion of color gamut create several means to provide higher quality
moving pictures to end users. It has been believed that higher frame
rate produces more natural and smoother motion for the viewers.
However, there is not enough investigation to evaluate this improve-
ment. On the other hand, as the video constitutes the majority of
data traffic in today’s communication networks [1], and frame rate,
alongside resolution and quantization parameter, is one of the most
effective rate control parameters, understanding the impact of frame
rate changes on motion quality in video has become ever more im-
portant.

Despite the growing popularity of high frame rate videos, our
understanding of human quality-of-experience (QoE) behaviors in
the temporal dimension remains rather limited. Traditional services
equate temporal quality to frame rate, leading to inaccurate QoE as-
sessment. Specifically, videos at the same frame rate could have
drastically different quality, which is further perplexed with bitrate
and spatial resolution. To make effective and efficient use of high
frame rate technology, it is important to thoroughly understand the
impact of temporal smoothness in end-users’ QoE.

The existing temporal video quality assessment models can
be roughly categorized into data-driven and knowledge-driven ap-
proaches. Data-driven approach estimates viewers’ QoE as a func-
tion of frame rate, which is calibrated with subject-rated video
dataset. This class of models typically makes a priori assumptions
about the form of the response function. For example, the video

quality is assumed to have an exponential/polynomial relationship
with respect to frame rate in [2] and [3], respectively. This approach
suffers from several problems. First, the shape of the actual quality-
frame rate function can deviate significantly from the pre-defined
analytic forms. Second, the interaction between frame rate and other
video parameters such as spatial resolution [4] is not accounted
for. Third, content dependency is not well taken into consideration.
Fourth, the content and resolution diversities of existing databases
are often insufficient for properly training and validating the models.

In contrast to data-driven models, knowledge-driven approaches
focus on the analysis of temporal statistical properties of videos at
different frame-rates [5, 6, 7, 8]. Motion smoothness in video is
one of the most important aspects of natural scene videos, which
has been exploited in optical flow estimation [9], probability mod-
els of motions [10, 11], and video quality assessment [12]. It has
been demonstrated that motion smoothness creates an effective tool
in detecting a wide range of well-known practical distortions, includ-
ing noise contamination, blurring, line or frame jittering, and frame
dropping [7].

Motivated by the success of motion smoothness in video arti-
fact detection [5, 13], we extend it to account for cross-frame rate
video quality assessment. We use local phase correlation of com-
plex wavelet coefficients in temporal direction to estimate motion
smoothness and investigate the performance of this measurement on
different groups of videos classified by motion type and variation.

2. METHOD

To measure motion smoothness in a video, we first assume an ideal
case where there is a rigid motion in a 1-D signal signal f(x) and
this motion can be modeled as [12]

h(x, t) = f(x+ u(t)) + b(t), (1)

where b(t) is the time varying background luminance which is ap-
proximately constant in a short period of time and u(t) is the spatial
movement over time. This model can be easily extended to the two
dimensional space of video frames.

Consider a family of complex wavelets of the form w(x) =
g(x)ejwcx, where g(x) is varying slowly with x andwc is the center
frequency of wavelet. The variations of a mother wavelet w(x) can
be generated by

ws,p =
1√
s
w(
x− p
s

) =
1√
s
g(
x− p
s

)ejwc(x−p)/s, (2)

where s and p are the scale and shift factors, respectively. Then
the complex wavelet transform of the signal f(x) can be computed
as [12]
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F (s, p) =

∫ ∞
−∞

f(x)w∗s,p(x)dx

=
1

2π

∫ ∞
−∞

F (w)
√
sG(sw − wc)ejwpdw,

(3)

where F (w) andG(w) are the Fourier transforms of f(x) and g(x),
respectively. Applying this transform on the motion model of Eq. (1)
leads to

H(s, p, t) =
1

2π

∫ ∞
−∞

F (w)
√
sG(sw − wc)ejw(p+u(t))dw

≈F (s, p)ej(wc/s)u(t).

(4)

Take a logarithm on both sides, we have

logH(s, p, t) ≈ logF (s, p) + j(wc/s)u(t). (5)

The imaginary part of Eq. (5) has a linear relationship with mo-
tion u(t). To relate motion smoothness with this complex wavelet
transform, we examine complex wavelet coefficients starting from a
time instance t0 and sample the sequence at consecutive time steps
t0 + n∆t for n = 0, 1, ..., N . Using these samples in the tempo-
ral direction, an N -th order temporal correlation function is defined
as [12]

LN (s, p) ≈
N∑
n=0

(−1)n+N (Nn ) logH(s, p, t0 + n∆t). (6)

Using Eqs. (5) and (6), it can be shown that when the motion is
(N -1)-th order smooth (all derivatives of u(t) in degree higher than
N are zero), the temporal correlation is approximately zero (i.e.
LN (s, p) ≈ 0) [12]. Real-world videos deviate from the ideal case,
and such deviation may be used as a measure of motion smoothness.

To observe how motion smoothness varies as a function of local
signal energy, we define a temporal energy function [12]

MN (s, p) ≈
N∑
n=0

(Nn ) logH(s, p, t0 + n∆t), (7)

and examine the temporal correlation function (LN ) and temporal
energy function (MN ) jointly.

An example of the joint histogram of the real part of MN and
the imaginary part of LN for a sample video for N = 2 is shown
as a gray-scale image in Fig. 1(a), where brighter bin indicates more
frequent occurrence. In the case of perfect motion smoothness, all
bright points would concentrate at the center horizontal line of 0
phase. Spread from the center indicates deviation from perfectly
smooth motion. To evaluate the trend of motion smoothness with
respect to the local signal energy, the circular variance (CV) [14, 15]
is calculated for each column of the joint histogram by

CVq = 1−
|
∑M
p=1 hp,qe

jθp |∑M
p=1 hp,q

, (8)

where M is the number of bins in the histogram and θp is the center
angle of bin i in a column and hp,q is the height of that bin. CV is
bounded between 0 and 1, and the lowest value 0 is achieved when
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Fig. 1. Temporal motion smoothness by (a) joint histogram of
(Re{M2}, Im{L2}); and (b) measure of circular variance on
columns of joint histogram.

the histogram is clustered in one bin, meaning that all coefficients
have the same angle, e.g. concentrated at 0 phase. The trend of CV
curve is shown in Fig. 1(b). The normalized area under the curve of
CV is computed to quantify motion smoothness

S =

∑K
q=1(1− CVq)

K
, (9)

where K is the number of columns. Examples of the joint his-
togram for different video contents at different frame rates are given
in Fig. 2. It is interesting to observe that generally motion smooth-
ness increases as a function of video frame rate. Also note that, there
is strong content-dependencies of the histogram, which in turn affect
the CV curve and the subsequent smoothness measure S. In the case
that a reference high frame rate (HFR) video is available in the eval-
uation of a test low frame rate (LFR) video, it is meaningful to assess
motion smoothness relative to the reference. Therefore, we propose
to normalize the smoothess measure S of a video against that of the
HFR reference video

S̃ =

∑K
q=1(1− CVq)∑K
q=1(1− CV Rq )

, (10)

where CV R is the CV value of the reference HFR video, and S̃ is
the normalized temporal motion smoothness (TMS) measure.

3. EXPERIMENTAL RESULTS

We evaluate the proposed TMS measure on 10 high frame rate video
sequences selected from the BVI-HFR dataset [16]. Each source se-
quence is originally at 120 fps and is converted to lower frame rate
test sequences at 60 fps, 30 fps, and 15 fps, respectively. Mean Opin-
ion Scores (MOSs) are then collected by running a subjective test to
reflect viewer’s QoE on the video sequences. The details about the
dataset and subjective test are reported in [16]. Using the database,
we first examine how the proposed TMS measure correlates with
video frame rate and human subjective QoE for individual video
content. We then investigate further on motion-based content de-
pendencies.

3.1. Validation

To better understand and to demonstrate the proposed motion
smoothness measure, we examine how the joint histogram and
its corresponding CV change with respect to different frame rates
in Figs. 2 and 3. It can be observed from Fig. 3 that regardless
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Video name bobblehead books cyclist guitar-focus lamppost

Snapshot

15 fps

30 fps

60 fps

120 fps

Fig. 2. Temporal motion smoothness by 2D joint histogram of (Re{M2}, Im{L2}) for selected videos from BVI-HFR at four different
frame rates.

of the content variation, the effect of frame rate reductions is well
captured by the departure of the CV curves of the distorted videos
from the reference CV curves. Specifically, the CV curve generally
moves away from the reference CV curve with the decrease in frame
rate. This is further confirmed by the high Spearman rank-order
correlation coefficient (SRCC) between the TMS factor and MOS
shown in Table 1. The only exception appears to be the “hamster”
sequence, where the proposed TMS factor is unable to distinguish
the reference and distorted videos. The possible reason could be
that the spatial variation in motion pattern and speed are very high,
or the local motion pattern in high speed refresh rate may be too
complicated to be fully captured by the phase correlation between
complex wavelet coefficients.

3.2. Motion Content Dependency

Although the proposed TMS factor exhibits a high correlation with
perceptual quality within each content, its behavior varies signifi-
cantly across different videos as is evident in Fig. 2. For example,
for high motion videos such as the “cyclist”, there is much larger
variation from the ideal smooth motion. This motivates us to study
motion-based content dependency of the proposed motion smooth-

ness measure.
An important aspect of motion in the video is the presence of

camera geometric transformation in the video captioning process.
Such camera motion transformations result in global motion in
video. The global motion has important impact on the visibility of
distortion in video and general perception of video quality [17]. For
example, the blurring artifact is less visible in globally fast mov-
ing scenes and such effects have been considered in existing video
quality models [17].

We classify videos into two groups based on the presence of
global motion, and computed SRCC between the TMS factor and
DMOS on each group. The experimental results are reported in Ta-
ble 2. It can be seen that the proposed metric better predicts human
opinions for videos containing global motion. This could be because
the motion is more easily perceived in global motion videos as most
of the regions of frames are moving in a consistent manner. For the
local motion videos, as moving regions are part of the frames only,
the global statistics based TMS factor cannot precisely reflect the
impact of such local changes in the overall perceptual quality.

Motion perception provides another important perspective that is
missing in the proposed motion smoothness measure to study cross-
frame-rate video quality assessment. Specifically, it has been shown

1420



0 5 10 15 20

M2 real part

0

0.2

0.4

0.6

0.8

1

C
V

bobblehead

15fps

30fps

60fps

120fps

0 5 10 15 20

M2 real part

0

0.2

0.4

0.6

0.8

1

C
V

books

15fps

30fps

60fps

120fps

0 5 10 15 20

M2 real part

0

0.2

0.4

0.6

0.8

1

C
V

bouncyball

15fps

30fps

60fps

120fps

0 5 10 15 20

M2 real part

0

0.2

0.4

0.6

0.8

1

C
V

catch

15fps

30fps

60fps

120fps

0 5 10 15 20

M2 real part

0

0.2

0.4

0.6

0.8

1

C
V

catch_track

15fps

30fps

60fps

120fps

0 5 10 15 20

M2 real part

0

0.2

0.4

0.6

0.8

1

C
V

cyclist

15fps

30fps

60fps

120fps

0 5 10 15 20

M2 real part

0

0.2

0.4

0.6

0.8

1

C
V

guitar_focus

15fps

30fps

60fps

120fps

0 5 10 15 20

M2 real part

0

0.2

0.4

0.6

0.8

1

C
V

hamster

15fps

30fps

60fps

120fps

0 5 10 15 20

M2 real part

0

0.2

0.4

0.6

0.8

1

C
V

lamppost

15fps

30fps

60fps

120fps

0 5 10 15 20

M2 real part

0

0.2

0.4

0.6

0.8

1

C
V

plasma

15fps

30fps

60fps

120fps

Fig. 3. Circular variance curves of 2D joint histograms of (Re{M2},
Im{L2}) for the selected videos at different frame rates.

that the perceptual motion information content is proportional to the
strength of relative motion and the inverse of global background mo-
tion [18]. A simple model to account for this relationship is given
by

V =
σ(d̃)

µ(d̃)
(11)

where V represents the spatial motion variation, σ is the variation of
frame difference, µ is the average of frame difference in pixels, and
d̃ is the temporal frame difference. Intuitively, V increases as the
motion statistics becomes more complex, and decreases as the un-
certainty of motion perception µ increases. It is considered a mea-
sure of spatial motion variation, or perceptual motion information
content (following the principle used in [18, 6]).

We use V to classify the videos used in this study into three
classes-low, medium, and high spatial motion variation, as shown in
Table 1. By conducting correlation analysis as reported in Table 2,
we observe that the proposed metric works better for the videos with

Table 1. Correlation of TMS factor with frame rate and DMOS for
individual video sequences of different motion types (global vs local
motion) and spatial motion variation levels.

video
sequence

motion type spatial
motion

variation

SRCC of
TMS vs.
DMOS

bobblehead global low -1
books global low -1

bouncyball local medium -1
cath track global low -1

cath local high -0.8
cyclist global low -1

guitar focus local medium -0.8
hamster local high -0.4

lamppost local medium -1
plasma local medium -1

mean/std - - -0.90 /0.18

Table 2. SRCC between S̃ and DMOS for different motion-based
content types.

video group SRCC
all 0.78

local motion 0.62
global motion 0.93

high spatial motion variation 0.71
medium spatial motion variation 0.87

low spatial motion variation 0.93

lower variation of motion across space. For the medium variation
of motion videos, the correlation is close to low V class, and the
accuracy of prediction drops significantly for the class of videos with
high spatial variation in motion. This could be because for these
videos, the proposed method calculates the correlation of wavelet
coefficients over the entire frame, while the motion is partial and
the human attention could be attracted to certain moving parts of the
video frames.

4. CONCLUSION AND DISCUSSION

We propose a novel motion smoothness measure based on local
phase correlation of complex wavelet coefficients. The proposed
measure provides a novel perspective to understand the perceptual
temporal quality and demonstrates strong promise in cross-frame-
rate video quality assessment.

Our study on motion-based content dependencies suggests di-
rections for future improvement. Specifically, much higher correla-
tion between the proposed TMS factor and DMOS is achieved when
the motion is global or when the motion variation is low across
space, but the correlation drops significantly for the cases of local
motion or high spatial variation of motion. This reveals the lim-
itation of the global statistics based approach in the current algo-
rithm. New measures that capture local TMS and the variation of
TMS across space would be helpful. New pooling methods based on
motion-based saliency detection may be employed to fuse local TMS
measurement in a perceptually more meaningful way. Furthermore,
how to combine the proposed TMS factor with other perceptual and
statistical features to create an overall video quality measure is also
worth further investigation.
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