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ABSTRACT

The real-world applications of 3D point clouds have been
growing rapidly in recent years, but effective approaches and
datasets to assess the quality of 3D point clouds are largely
lacking. In this work, we construct so far the largest 3D point
cloud database with diverse source content and distortion pat-
terns, and carry out a comprehensive subjective user study.
We construct 20 high quality, realistic, and omni-directional
point clouds of diverse contents. We then apply downsam-
pling, Gaussian noise, and three types of compression algo-
rithms to create 740 distorted point clouds. Based on the
database, we carry out a subjective experiment to evaluate the
quality of distorted point clouds, and perform a point cloud
encoder comparison. Our statistical analysis find that exist-
ing point cloud quality assessment models are limited in pre-
dicting subjective quality ratings. The database will be made
publicly available to facilitate future research.

Index Terms— point cloud, image quality assessment,
subjective quality, point cloud compression, downsampling

1. INTRODUCTION

A 3D point cloud is a collection of points representing a
3D shape, object or environment. Each point has its own
geometric coordinates and other associated attributes. 3D
point clouds find a wide variety of applications in manufac-
turing, construction, environmental monitoring, navigation,
animation, and rendering, among many others. Point clouds
are subject to various distortions during acquisition, pro-
cessing, compression, transmission, storage and rendering,
any of which may lead to quality degradation. Subjective
quality assessment is a straightforward and reliable approach
to evaluate point cloud quality. Although expensive, incon-
venient and time-consuming, a comprehensive subjective
quality study has many benefits. First, it provides data to
study user behaviors in evaluating perceived quality of point
clouds. Second, it supplies a test set to evaluate and compare
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the relative performance of point cloud processing methods
such as point cloud compression (PCC) algorithms. Third,
it can be utilized as a benchmark to validate and compare
the performance of objective point cloud quality assessment
(PCQA) models.

There are a number of publicly available point cloud
databases, including MPEG point cloud datasets [1], JPEG
Pleno database [2], and Stanford 3D scanning repository [3].
These databases suffer from several problems that limit
their usage in PCQA. These include inferior initial qual-
ity, limited meaningful viewpoints, and insufficient content
types. As a result, subjective experiments derived from
these databases [4, 5, 6, 7, 8, 9, 10] are inherently deficient
in providing reliable evaluations of point cloud processing
algorithms and objective PCQA models. The lack of realis-
tic distortions such as PCC also reduces the relevancy of the
databases in real-world applications. Moreover, most subject-
rated databases are not publicly available, with the exception
that the subjective data on a rather small database consisting
of only two contents are released in [10].

In this work, we construct a subject-rated point cloud
database covering diverse contents and distortion patterns.
First, we generate so far the largest high quality point cloud
dataset. The database consists of 20 contents of diverse ge-
ometric characteristics and textural patterns. Second, we
derive 740 distorted point clouds of five distortion types from
the dataset, where the distortion types include downsampling,
Gaussian noise contamination, and three state-of-the-art PCC
algorithms—S-PCC, V-PCC, and L-PCC [11]. Using the
database, we carry out a subjective user study to evaluate
perceived quality of distorted point clouds. We perform sta-
tistical analysis on the existing PCC algorithms, which leads
to several interesting observations. Finally, we conduct a
comprehensive evaluation on existing objective PCQA mod-
els.

2. SOURCE POINT CLOUD CONSTRUCTION

We gather a collection of objects with diverse geometric and
textural complexity, including snacks, fruits, vegetables, of-
fice supplies, and etc. The selected contents are moderate in
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Fig. 1: Snapshots of acquired point clouds.

size and are omni-directionally acquirable. Fig. 1 shows snap-
shots of the objects in our point cloud dataset. The 3D point
clouds are constructed using the following steps.

e Image acquisition: Image acquisition is conducted in
standardized laboratory environment which has a nor-
mal lighting condition without reflecting ceiling walls
and floor. A single-lens-reflex camera and a turntable
are employed to take photos of an object from any an-
gle. An example is shown in Fig. 2, where each photo
is placed at its capture position relative to the object in
the center.

e 3D reconstruction: We apply image alignment, sparse
point cloud reconstruction, dense point cloud recon-
struction and point cloud merging to each sequence
of images with Agisoft Photoscan [12]. The resulting
point clouds are further refined by Screened Pois-
son Surface Reconstruction [13] and resampling using
CloudCompare [14].

Fig. 2: Sample image acquisition process.

e Gaussian noise contamination: White Gaussian noise
is added independently to both geometry and tex-
ture elements with standard deviation of {0, 2,4} and
{8,16,32}, respectively. Then both geometry and
texture elements are rounded to the nearest integer,
followed by points removal by Meshlab [15].

e Standardization: Each point cloud is normalized to a
unit-cube with a step size of 0.001, where duplicated
points are removed [14]. Finally, 20 voxelized point
clouds are generated with an average number of 1.35M
points and a standard deviation of 656K, respectively.

e S/V/L-PCC: In 2017, MPEG issued a call for propos-
als on PCC methods for International Organization for
Standardization [11]. Three technologies were chosen
as test models in three categories: S-PCC for static
content, V-PCC for dynamic content and L-PCC for
dynamically capturing, respectively. In this work, S-
PCC reference codec [16] is employed to encode the
original point clouds with ‘triSoupDepth’ of {10},
‘triSoupLevel” of {4, 6,8} and ‘rahtQuantizationStep’
of {64,128,256,512}, respectively. V-PCC refer-

3. POINT CLOUD DATABASE CONSTRUCTION
AND SUBJECTIVE QUALITY ASSESSMENT

3.1. Distortion Generation

Using the aforementioned point cloud as the source, we apply
the following distortion processes.

e Downsampling: We apply octree-based downsam-
pling [14] to the normalized point clouds. Each di-

mension is uniformly divided into 2N intervals, where
N represents the octree level. Then points located in
the same cube are merged into one node. In this study,
we set NV to be 7, 8, and 9 respectively, to cover diverse
spatial resolutions.
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ence codec [17] is employed to encode the original
point clouds at three ‘geometryQP’ values and three
‘textureQP’ values, ranging from 35-50 and 35-50, re-
spectively, followed by duplicated points removal [15].
L-PCC [18] employs downsampling method to encode
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Fig. 3: Point cloud distortions. Geometry distortions: (a) Hol-
low. (b) Geometry noise. (c) Hole. (d) Shape distortion. (e)
Collapse. (f) Gap and burr. Texture distortions: (g) Texture
noise. (h) Blockiness. (i) Blur. (j) Color bleeding.

the geometry information, and is thus not performed
redundantly. We set the ‘quantizationSteps’ of texture
encoding as {16, 32, 48, 64}.

Eventually, 740 distorted point clouds are generated in total
by 5 distortion generators from 20 original point clouds.

Sampled distortion patterns in our database are shown in
Fig. 3. Itis interesting to observe that the distorted point cloud
not only exhibits loss of texture information similar to 2D
images such as blockiness and blur, but also novel geomet-
ric distortion types. Specifically, hollow is caused by point
cloud downsampling, where the point density is not sufficient
to cover the object surface. Holes and collapses arise from un-
successful triangulations and inappropriate downsampling in
S-PCC, respectively. Even when the triangulation is success-
ful, geometry distortion may still appear as a consequence of
ill-conditioned triangles. A sample case is given in the bot-
tom right part of Fig. 3 (d). Moreover, a large ‘geometryQP’
in V-PCC potentially results in gaps and burrs. All these dis-
tortions are point cloud-specific, which create new challenges
to objective PCQA models.

3.2. Subjective Quality Assessment

We employ Technicolor renderer [19] to render each point
cloud to a video sequence. The rendering window, point size
and point type are set to 960x960, 1 and ‘point’, respectively.
A horizontal and a vertical circle both with a radius of 5,000
are selected successively as the virtual camera path with the
center of circles at the geometry center of an object. The
remaining parameters are set as default. These settings pre-
serves detail information as much as possible while maintain-
ing the original point clouds to be watertight. One viewpoint
is generated every two degrees on these circles, resulting in
360 image frames for each point cloud. Each distorted clip
is then concatenated horizontally with its pristine counterpart
into a 10-second video sequence for presentation.
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Fig. 4: MOS distribution.

Our subjective testing environment is the same as that
for image acquisition. All video sequences are displayed
on a 23.6” LCD monitor at a resolution of 1920x 1080 with
Truecolor (32bit) at 60 Hz. The monitor is calibrated in
accordance with ITU-R Recommendation BT.500-13 [20].
Double-stimulus impairment scale (DSIS) methodology is
applied in our subjective test [20]. Videos are displayed in
random order using a customized graphical user interface,
where subjective scores of individual viewer are recorded.

A total of 60 naive subjects, including 32 males and 28
females aged between 21 and 40, are recruited in the subjec-
tive test. All the subjects have normal or corrected-to-normal
vision, and viewed videos from a distance of twice the screen
height. Before the testing session, a training session is per-
formed during which 18 videos that are different from the
videos in the testing session are shown to the subjects. The
same methods are applied to generate videos used in both the
training and testing sessions. Therefore, subjects knew what
distortion types and levels would appear before the testing
session, and thus the learning effects are kept minimal. Due
to the limited subjective experiment capacity, we employed
the following strategy. Each subject is assigned 10 objects
in a circular fashion. Specifically, if subject i is assigned ob-
jects 1 to 10, then subject i + 1 watch objects 2 to 11. Each
video is scored for 30 times and 22,800 subjective ratings, in-
cluding 600 scores for reference point clouds, are collected in
total. For each subject, the whole study takes about 2 hours,
which is divided into 4 sections with three 5-minute breaks
in-between to minimize the influence of fatigue effect. Due
to expanded range and finer distinctions between ratings, 100-
point continuous scale is utilized instead of a discrete 5-point
ITU-R Absolute Category Scale (ACR).

After converting subjective scores to Z-scores, we apply
outlier removal scheme suggested in [20]. No outlier detec-
tion is conducted participant-wise. Then Z-scores are linearly
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Fig. 5: Aggregated rate-quality curves of S/V/L-PCC refer-
ence codecs.

rescaled to lie in the range [0, 100]. Mean opinion score
(MOS) for each distorted point cloud is calculated by av-
eraging the re-scaled Z-scores from all valid subjects. The
histogram for MOS distribution is shown in Fig. 4, which
demonstrates the distorted point clouds span most of the qual-
ity range. Considering the MOS as the “ground truth”, Pear-
son linear correlation coefficient (PLCC) and Spearman rank-
order correlation coefficient (SRCC) between each viewer’s
scores and MOSs are calculated to estimate the performance
of individual subjects. Both the mean PLCC and SRCC be-
tween each subject and MOS are as high as 0.81 with a rela-
tively small standard deviation of 0.08, which indicates sub-
stantial agreement between individual subjects.

4. DATA ANALYSIS AND DISCUSSION

4.1. Performance Comparison of PCC Algorithms

Compression of point clouds has been an active research
topic in the past few years. There is a significant interest in
comparing the performance of state-of-the-art PCC. Here we
compare the performance of the MPEG test models S/V/L-
PCC [11]. It is worth mentioning that the default settings are
selected for S/V/L-PCC reference codecs. Fine tuning of the
codecs is not performed.

The aggregated rate-quality curves over all content of the
PCC codecs are shown in Fig. 5. From the subjective test
results and the rate-quality performance, we have several ob-
servations. First, V-PCC achieves the best performance on
average at low bitrate range, while S-PCC reference codec
being the second best. Second, at high bitrate, the perfor-
mance gaps between PCC methods become narrower. Third,
for S-PCC reference codec, not all rate-distortion surfaces are
monotonous along the direction of increasing geometry bi-

Table 1: Performance of Objective PCQA Models

Model PLCC SRCC RMSE
PSNRpointonint,MSE 0.43 0.41 20.66
PSNRpointhoint,Hausdorff 0.34 0.26 21.54
PSNR,0int2piane, MSE 0.40 0.37 21.06
PSNRpointQplane,Hausdorff 0.34 0.29 21.55
PSNRy 0.61 0.58 18.20

AS prean 0.34 0.33 21.59

ASRrms 033 032 2166

ASysE 0.33 0.32 21.66
PSNR,ojection 0.50 0.46 19.87
SSIMprojection 0.60 0.61 18.32
MS-SSIM,,rojection 0.67 0.67 17.02
VIFP,,0jection 0.77 0.77 14.71

trate due to unsuccessful triangulation. Fourth, in L-PCC ref-
erence codec, the perceived quality decreases rapidly when
downsampling occurs with the decrease of geometry bitrate.

4.2. Performance of Objective PCQA Models

The performance of both point-based [21, 22, 23, 24, 25, 26]
and projection-based [9] objective PCQA models are tested
and compared against our database. We employ PLCC,
SRCC and root mean squared error (RMSE) as the evaluation
criteria [27]. Table 1 shows the experimental results. We
summarize the key observations as follows. Compared to
PSNRy [24, 25], geometry PSNR models [21, 24, 25] and
angular similarity (AS) models [26] do not seem to provide
adequate predictions of perceived quality of colored point
clouds due to the lack of texture information. By contrast,
projection-based models perform better, among which visual
information fidelity in pixel domain (VIFP) [28] achieves the
best performance compared to PSNR, structural similarity
index (SSIM) [29] and multi-scale structural similarity (MS-
SSIM) [30]. Nevertheless, the quality prediction accuracy
is only moderate when compared with the performance of
image quality models on 2D images.

5. CONCLUSION

We construct a point cloud database of diverse content and
distortion variations and conduct a lab-controlled subjective
user study. The database contains 760 point clouds with
MOSs approximately evenly distributed from poor to excel-
lent perceived quality levels. We find that V-PCC performs
better than S-PCC and L-PCC at low bitrate. Our study also
show that existing objective PCQA models are limited in
providing accurate quality predictions, suggesting significant
room for future improvement. The database will be made
publicly available to facilitate future research.
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