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ABSTRACT

High Dynamic Range (HDR) Wide Color Gamut (WCG) Ultra High
Definition (4K/UHD) content has become increasingly popular re-
cently. Due to the increased data rate, novel video compression
methods have been developed to maintain the quality of the videos
being delivered to consumers under bandwidth constraints. This has
led to new challenges for the development of objective Video Quality
Assessment (VQA) models, which are traditionally designed with-
out sufficient calibration and validation based on subjective qual-
ity assessment of UHD-HDR-WCG videos. The large performance
variations between different consumer HDR TVs, and between con-
sumer HDR TVs and professional HDR reference displays used for
content production, further complicates the task of acquiring reli-
able subjective data that faithfully reflects the impact of compression
on UHD-HDR-WCG videos. In this work, we construct a first-of-
its-kind video database composed of PQ-encoded UHD-HDR-WCG
content, which is subsequently compressed by H.264 and HEVC en-
coders. We carry out a subjective study on a professional 4K-HDR
reference display in a controlled lab environment. We also bench-
mark representative Full Reference (FR) and No-Reference (NR)
objective VQA models against the subjective data to evaluate their
performance on compressed UHD-HDR-WCG video content. The
database will be made available to the public, subject to content
copyright constraints.

Index Terms— video quality assessment, high dynamic range,
wide color gamut, ultra high definition, 4K, subjective testing, sub-
jective data processing, objective analysis

1. INTRODUCTION

The last two decades have witnessed enormous gains in the develop-
ment of perceptual objective Image and Video Quality Assessment
(IQA/VQA) methods. However, most of these developments were
made while working with visual content of low resolution (1080p
or below), low dynamic range (8 bits per color) and constrained
color gamut (ITU-R BT.709). Recent advances in the acquisition,
transmission, display, and storage technologies have resulted in
the widespread availability and adoption of High Dynamic Range
(HDR) Wide Color Gamut (WCG) Ultra High Definition (4K/UHD)
content and displays. This has led to new challenges for the devel-
opment of objective Video Quality Assessment (VQA) models.

Subjective testing plays a critical role in the development and
validation of objective VQA models. Although some recent sub-
jective studies have been carried out on newly constructed HDR
databases [1, 2, 3, 4, 5, 6, 7], they exhibit one or more of the follow-
ing limitations: 1) The maximum spatial resolution of visual content
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(a) Preliminary Database (b) Waterloo UHD-HDR-WCG Database

Fig. 1: MOS distribution of Waterloo UHD-HDR-WCG database
(b) in comparison with a preliminary database (a).

is Full High Definition (FHD 1080p). UHD/4K content is lacking; 2)
The color gamut of the content and/or the displays used in these stud-
ies is usually BT.709, despite the growing popularity of WCG, such
as DCI-P3 and BT.2020; 3) Most studies use content with a max-
imum temporal resolution of 30 frames per second (fps); 4) Fixed
distortion levels such as a given bitrate in video encoding are used to
create these databases, regardless of content complexity variations,
leading to inadequate perceptual separation across distortion levels
and reduced overall effectiveness for objective benchmarking pur-
poses; 5) Only a limited number of Full Reference (FR) objective
methods were evaluated, while state-of-the-art FR and No-Reference
(NR) models were missing from these tests.

In this work we design a new dataset namely the Waterloo UHD-
HDR-WCG Database. It includes PQ-encoded HDR content with
UHD resolution, BT.2020 color gamut and two frame rates (24 fps
and 59.94 fps). Adaptive bitrates are used to generate perceptually
separated H.264 and HEVC compressed videos. We use a state-
of-the-art professional 4K-HDR reference display, with a dedicated
hardware pipeline, to construct the subjective experiment environ-
ment. A novel data processing procedure is used to generate the
Mean Opinion Scores (MOS). Finally, we use the subjective data to
evaluate the performance of eleven FR and seven NR representative
objective quality assessment methods.

2. DATABASE AND HARDWARE SETUP

The Waterloo UHD-HDR-WCG database is created from 14 ten-
second high-quality reference videos, all of which have Ultra High
Definition (UHD) resolution (3840×2160), bit depth of 10 bits
(Luma), YUV 4:2:0 chroma format, SMPTE ST 2084 (PQ) transfer
function, and BT.2020 color primaries to ensure Wide Color Gamut
(WCG) content. The frame rate is 59.94 fps and 24 fps for nine
and five reference videos, respectively. The focus of this work is
to study the impact of compression on UHD-HDR-WCG content.

1740978-1-5386-6249-6/19/$31.00 ©2019 IEEE ICIP 2019



Subjective 

Raw Data

Convert to 

Z-Scores

Final MOS

MOS from 

Z-Scores

Outlier 

Removal

Rescaling
Find µrmos 

and σrmos

MOS from 

Raw Data

Find µzmos 

and σzmos

Fig. 2: Process of Mean Opinion Scores (MOS) generation.

Therefore, the reference videos are compressed by two encoders
(H.264 and HEVC) at five bitrates each, resulting in 140 distorted
videos. One way to construct VQA databases is to distort refer-
ence content at predefined distortion levels, that is, by using fixed
bitrates for all contents. While this is a convenient approach, it does
not lead to a uniform distribution of distorted content in the visual
quality range. In order to uncover such issues, we first constructed
a test FHD-HDR database that had fixed distortion levels (bitrates)
regardless of content and carried out a preliminary subjective test.
The MOS histogram of this test database is shown in Fig. 1(a),
where it can be seen that this database has a highly non-uniform
distribution of distorted content in the quality range. To address this
issue, we selected the distortion levels for the Waterloo UHD-HDR-
WCG database in a content-adaptive manner. Considering the visual
quality range to be [0,100], where 100 is the highest quality, we first
encoded the reference videos at multiple bitrates and used a state-
of-the-art FR VQA method, SSIMplus [8], to select bitrates that led
to distorted videos closest to predefined quality levels (94, 74, 54,
36, 18), followed by manual observation and bitrate adjustment to
obtain perceptually separated distorted videos for each reference.
The MOS histogram of the Waterloo UHD-HDR-WCG database
is shown in Fig. 1(b), where it can be seen that the distorted con-
tent is more evenly distributed in the visual quality range for better
perceptual quality separation.

Subjective experiments were carried out on a Canon DP-V2420
4K/UHD HDR Reference Display [9] which is a mastering mon-
itor that is compatible with the Academy Color Encoding System
(ACES) [10] and supports both the SMPTE ST 2084 (PQ) and Hy-
brid Log Gamma (HLG) transfer functions. The display’s peak lu-
minance is 1000 cd/m2, minimum black level is 0.005 cd/m2, and
screen size is 24 inch. To preserve the integrity of the content, we
used the display’s Quad 3G Serial Digital Interface (SDI) which sup-
ports a throughput of 12 Gbits/s. This fulfills the maximum through-
put requirement of the high frame rate (59.94 fps) content of the
database, which stands at around 11.12 Gbits/s. The workstation
holding the database was connected through a Blackmagicdesign
PCI Express Cable Kit to a Blackmagicdesign Ultrastudio 4K Ex-
treme 3 [11] playback device. Here the single data stream is split
into four streams that are connected to the Ultrastudio’s SDI out-
put interface, which is connected to the Reference Display. For
smooth operation, the compressed videos were decoded and the en-
tire database was stored in the YUV file format. It was ensured that
all components in the video playback pipeline were capable of han-
dling the high throughput requirements. Thus, the entire database
(around 1.64 TBytes) was stored in a Samsung 2 TByte 960 Pro M.2
PCIe NVMe Solid State Drive (SSD) which is capable of sequential
read speeds of up to 3.5 GBytes/s. The workstation is equipped with

32 GBytes of 3000 MHz DDR4 RAM to allow for storing an entire
video in memory for quick transmission to the display. For optimal
operation, customized video playback software was written by using
the Blackmagicdesign Software Development Kit (SDK) which was
invoked through MATLAB during subjective testing.

3. SUBJECTIVE STUDY AND DATA PROCESSING

The subjective study was conducted in the Image and Vision Com-
puting (IVC) laboratory at the University of Waterloo in a dark room
environment. A total of 51 subjects, including 29 males and 22 fe-
males aged between 18 and 35, took part in the study. Further, eight
subjects were regarded as experts since they worked in the area of
VQA, while the remaining 43 were considered as naı̈ve subjects.
All the subjects had normal or corrected-to-normal vision, and were
not color-blind. The single-stimulus methodology with hidden ref-
erence [12] was used to carry out the study. The subjects were asked
to evaluate the content at a viewing distance of approximately twice
the screen height. The length of the study was around 80 minutes
for each subject, which included two 30 minute rating sessions with
a mandatory break in-between to reduce visual fatigue effect. Af-
ter subjects viewed a 10-second content, the test display went black
and a scoring GUI appeared on a secondary screen where subjects
recorded their scores by using a sliding bar. The score range of 0 to
100 was divided into intervals of 20 and labeled respectively as Bad,
Poor, Fair, Good, Excellent, and subjects could select any integer
value in this range. A higher score indicates better visual quality. To
help orient the subjects with the test environment and to familiarize
them with the quality range, a training session was carried out be-
fore the actual test which was composed of five distorted videos with
varying distortion levels. The training videos had no overlap with the
formal test videos and no instructions were given about which video
should get what score.

Raw subjective scores are processed into final Mean Opinion
Scores (MOS) by using the procedure shown in Fig. 2, where the
goal is to take into account the variations in individual subject quality
scales while maintaining the overall mean and variance of the raw
scores. Since subjects may use the quality scale variably with respect
to each other, raw scores per subject are first converted to Z-scores
to account for these variations:

zij =
sij − µi

σi
(1)

where sij denotes the raw score assigned by subject i to video j, zij
denotes the corresponding Z-score, µi and σi are respectively the
mean and standard deviation of all the raw scores assigned by subject
i in the test. Next, outlier detection and removal is performed as
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Fig. 3: SRCC between MOS and individual subject scores. The
right-most bar shows average subject performance with error bar.

suggested in [12], which leads to the rejection of nine subjects. The
mean of the Z-scores (ẑij) of the remaining subjects (N = 42) for
each video j is computed which leads to the MOS in the Z domain
(MOSzj ), given as:

MOSzj =
1

N

N∑
i=1

ẑij (2)

The vector of all MOSzj values (MOSz) has the range [-2.27,
1.43] and needs to be rescaled. Although minmax normalization has
been used to perform such rescaling [13, 14], we avoid using this
technique since it can alter the distribution of data. Instead we use
the following approach to generate the final MOS:

MOS = σrmos

[
MOSz − µzmos

σzmos

]
+ µrmos (3)

where µzmos and σzmos are respectively the mean and standard de-
viation of MOSz , whereas µrmos and σrmos are respectively the
mean and standard deviation of the Mean Opinion Scores obtained
from the raw subjective ratings. To evaluate the effectiveness of
the final MOS, we compute its correlation with individual subjects’
scores. Fig. 3 shows the Spearman Rank Correlation Coefficient
(SRCC) of each valid subject with respect to MOS, where the right-
most column shows the performance of an average subject with error
bar. It can be observed that there is a good degree of agreement be-
tween individual subjects and MOS.

4. PERFORMANCE OF OBJECTIVE VQA MODELS

We tested the performance of representative VQA methods on the
Waterloo UHD-HDR-WCG database. These include the FR meth-
ods: DSS [15], ESSIM [16], FSIM [17], GMSD [18], GSIM [19],
HDRVDP2 [20], HDRVQM [7], IWSSIM [21], PSNR, SRSIM [22],
and VIFDWT [23], and NR methods: BRISQUE [24], CORNIA
[25], dipIQ [26], HOSA [27], LPSI [28], NIQE [29], and VMEON
[30]. All but HDRVQM and VMEON are designed for objective Im-
age Quality Assessment (IQA). These methods are applied to videos
in a frame-by-frame manner and a final quality score is obtained by
averaging across all frames. Among these methods, only HDRVDP2
and HDRVQM are designed specifically for HDR content, whereas
all other methods have been designed and validated for Low Dy-
namic Range (LDR) content. PQ-encoding was substituted for the

Table 1: Performance of Quality Assessment Algorithms. Best per-
forming results in each category are in bold.

Category Method PLCC SRCC RMSE

FR

DSS [15] 0.7685 0.7456 12.3718
ESSIM [16] 0.8512 0.8389 10.1485
FSIM [17] 0.8693 0.8564 9.5568
GMSD [18] 0.7366 0.7045 13.0781
GSIM [19] 0.8596 0.8453 9.8812
HDRVDP2 [20] 0.7035 0.6703 13.7423
HDRVQM [7] 0.7783 0.7759 12.1428
IWSSIM [21] 0.8088 0.7861 11.3730
PSNR 0.5113 0.4615 16.6185
SRSIM [22] 0.8726 0.8630 9.4462
VIFDWT [23] 0.6809 0.6748 14.1612

NR

BRISQUE [24] 0.3622 0.3271 18.0241
CORNIA [25] 0.6497 0.6296 14.7003
dipIQ [26] 0.6192 0.5560 15.1845
HOSA [27] 0.5379 0.5138 16.3015
LPSI [28] 0.3941 0.3820 17.7718
NIQE [29] 0.5286 0.4922 16.4152
VMEON [30] 0.5776 0.5308 15.7845

mapping used by HDRVQM (PU-encoding) to convert the linear
light data into a perceptually uniform space. While PQ is one of the
specifications recommended by ITU for mapping HDR data [31], PU
is an older mapping that is not included in the recommendation. The
performance of these methods was evaluated by using three evalu-
ation metrics: Pearson Linear Correlation Coefficient (PLCC) and
Root Mean Square Error (RMSE) to assess prediction accuracy and
SRCC to assess prediction monotonicity [32]. A five-parameter lo-
gistic function [33] was used to perform non-linear mapping of ob-
jective scores to MOS before the computation of PLCC and RMSE.
A better objective method should have higher PLCC and SRCC,
and lower RMSE values. Table 1 shows the database-wide perfor-
mance of the objective methods in terms of the three evaluation met-
rics. To draw statistically sound inferences about the performance of
these methods, we carried out hypothesis testing on model predic-
tion residuals (after non-linear mapping). Through the Jarque-Bera
test [34] at the 5% significance level, we determined that the pre-
diction residuals of all methods (except PSNR) are likely normally
distributed. This enabled us to compare the model residuals through
statistical significance testing by using the F-test [35]. The results
are shown in Table 2, where “1”, “–”, or “0” mean that the method in
the row is statistically (with 95% confidence) better, indistinguish-
able, or worse than the method in the column respectively.

The LDR FR method SRSIM is found to be the top performer
in terms of PLCC, SRCC and RMSE (Table 1). Other high per-
forming FR methods include ESSIM, GSIM, and FSIM, where it
can be seen from Table 2 that their performance is statistically indis-
tinguishable from SRSIM. All of them inherit a similar formulation
of signal fidelity measurement from SSIM [36]. Somewhat surpris-
ingly, the HDR specific FR methods HDRVDP2 and HDRVQM do
not offer superior performance on the Waterloo UHD-HDR-WCG
database. This analysis suggests that LDR FR methods may be ex-
tended for HDR VQA, at least as far as compression is concerned,
and potential further enhancement is possible by making HDR spe-
cific adjustments. Tables 1 and 2 also indicate that all NR methods
under testing perform rather inadequately. All these methods were
designed for LDR content and most of them required some form of
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Table 2: Statistical Significance Testing results for competing objective models on the Waterloo UHD-HDR-WCG database. A “1”, “–”,
or “0” means that the method in the row is statistically (with 95% confidence) better, indistinguishable, or worse than the method in the
column respectively. Legend: BRISQUE (m1), LPSI (m2), PSNR (m3), NIQE (m4), HOSA (m5), VMEON (m6), dipIQ (m7), CORNIA
(m8), VIFDWT (m9), HDRVDP2 (m10), GMSD (m11), DSS (m12), HDRVQM (m13), IWSSIM (m14), ESSIM (m15), GSIM (m16), FSIM
(m17), SRSIM (m18). FR methods are marked in bold while NR methods are marked in italic.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 m16 m17 m18
m1 – – – – – – 0 0 0 0 0 0 0 0 0 0 0 0
m2 – – – – – – 0 0 0 0 0 0 0 0 0 0 0 0
m3 – – – – – – – – 0 0 0 0 0 0 0 0 0 0
m4 – – – – – – – – 0 0 0 0 0 0 0 0 0 0
m5 – – – – – – – – 0 0 0 0 0 0 0 0 0 0
m6 – – – – – – – – – – 0 0 0 0 0 0 0 0
m7 1 1 – – – – – – – – 0 0 0 0 0 0 0 0
m8 1 1 – – – – – – – – – 0 0 0 0 0 0 0
m9 1 1 1 1 1 – – – – – – – 0 0 0 0 0 0

m10 1 1 1 1 1 – – – – – – – – 0 0 0 0 0
m11 1 1 1 1 1 1 1 – – – – – – – 0 0 0 0
m12 1 1 1 1 1 1 1 1 – – – – – – 0 0 0 0
m13 1 1 1 1 1 1 1 1 1 – – – – – 0 0 0 0
m14 1 1 1 1 1 1 1 1 1 1 – – – – – 0 0 0
m15 1 1 1 1 1 1 1 1 1 1 1 1 1 – – – – –
m16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 – – – –
m17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 – – – –
m18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 – – – –
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Fig. 4: Scatter plots of best performing FR method SRSIM (a) and
NR method CORNIA (b).

training, that was also done on LDR content. Clearly, there is sig-
nificant room for improvement in HDR specific design innovations.

Similar performance evaluation results on FR- and NR-VQA models
are observed when H.264 and HEVC compressed videos are evalu-
ated separately. Fig. 4 shows the scatter plots for the top perform-
ing FR and NR methods, where the H.264 and HEVC compressed
videos are separately identified.

5. CONCLUSION

In this work, we have constructed a first-of-its-kind Waterloo UHD-
HDR-WCG database composed of PQ-encoded UHD-HDR-WCG
content compressed by H.264 and HEVC encoders in a content adap-
tive manner. We have carried out a subjective study on a professional
Canon DP-V2420 4K/UHD HDR Reference Display. To the best of
our knowledge, such an endeavor has not been attempted before, and
no database of its kind is available to the research community. We
have also proposed a novel method to process subjective data into
MOS that accounts for subject quality scale variations while keep-
ing the overall mean and standard deviation of subjective scores un-
changed. Finally, we have evaluated the performance of eleven FR
and seven NR representative objective quality assessment methods
on the new database. Our analysis indicates that FR methods de-
veloped for LDR content are promising to serve as the basis for the
development of highly effective FR-VQA models for UHD-HDR-
WCG videos. On the other hand, there is substantial room for im-
provement when it comes to NR-VQA of UHD-HDR-WCG content.
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