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ABSTRACT

We propose an end-to-end deep fusion-based approach to enhance
the quality of images acquired in weak illumination environment.
The proposed deep fusion network (DFN), without estimating illu-
mination explicitly, uses a convolutional neural network (CNN) to
generate confidence maps as spatial weighting factors to fuse im-
ages created by multiple base image enhancement techniques that
complement each other in a content-dependent manner. Our tests
on both synthetic and real weakly illuminated images show that the
proposed DFN approach delivers superior performance in terms of
both subjective visual perception and objective quality assessment.

Index Terms— weakly illuminated image enhancement, Retinex,
image fusion, convolution neural network

1. INTRODUCTION

High image quality is an essential requirement in many computer vi-
sion applications such as object detection and image classification,
etc. Poor-quality images captured under weakly illumination con-
ditions may largely affect the accuracy of further tasks. Many ap-
proaches have been proposed to enhance the quality of weakly illu-
minated images. Existing methods fall roughly into three categories:
histogram-based, Retinex-based and learning-based.

Histogram-based methods [1] [2] [3] [4] improve image con-
trast and brightness by remapping pixel values in image intensity
histograms. The Retinex model, proposed by Land and McCann [5],
describes an image as the product of illumination and reflectance and
enhance the degraded images by lightening the illumination compo-
nent. There have been many variations of the Retinex approach,
mainly differing in the illumination estimation methods. Wang et al.
[6] estimates illumination by a bright-pass filter. Guo et al. [7] ex-
tracts the bright channel of RGB representation as initial coarse illu-
mination and refine it based on a structure prior. Fu et al. [8] smooth
the bright channel coarse illumination with a guided filter [9] and
then fuse it with its two varieties by hand-crafted weights. Essen-
tially, estimating illumination is an ill-posed problem. Any error in
estimation may affect the quality of the restored images. Besides, it
requires adjusting image intensity manually when lightening the es-
timated illumination. Many learning-based methods were proposed
in recent years. Lore et al. [10] designed a stacked antoencoder
named LLNet. Li et al. [11] utilize convolutional neural network
(CNN) to estimate coarse illumination and smooth it using a guid-
ed filter. Though learning-based, the learned CNN produces illumi-
nation estimation that is subsequently employed under the Retinex
framework. Thus this method belongs to both categories.

In this work, we propose a deep fusion network (DFN) approach
for image enhancement. DFN is an end-to-end trainable network that
combines images created by multiple base enhancement methods,

without performing illumination estimation explicitly. Synthetic im-
age pairs are generated to train DFN. Experiments on both synthetic
and real weakly illuminated images show that DFN enhances im-
age brightness and contrast while better preserving structural details
than state-of-the-art image enhancement algorithms. DFN enhanced
images offer better performance in terms of both perceptual visual
quality and objective image quality assessment.

2. PROPOSED METHOD

Images captured under weak illumination conditions have defects
of low contrast, dark brightness and flat color saturation. Existing
image enhancement methods may be successful in improving the
quality of such images, but they are often unrobust, producing in-
consistent results in many corner case. To make the best use of the
advantages of existing methods and produce robust results, we op-
t to train a network that automatically fuses the results produced by
multiple base enhancement algorithms in a content-adaptive manner.
The architecture of the proposed method is shown in Fig. 1 and will
be elaborated in detail in the following sections.

2.1. Base Image Enhancer

CLAHE. Contrast limited adaptively histogram equalization (CLA-
HE) [4] is an image enhancement technique to lighten brightness
and enhance contrast, the contrast limitation of which can decrease
over-enhancement and avoid noise amplification. We denote CLA-
HE enahcned image as Ich.
Log Correction. Improvement in brightness is insufficient in CLA-
HE derived image when compared with the significant enhancement
of contrast. Log correction is a simple non-linear method to adjust
image brightness. With appropriate parameters settings, it can light-
en dark regions while keeping bright regions from over-exposure.
Thus, we utilize log correction to create the second base enhance-
ment image Ilog:

Ilog = log11(1 + 10I) (1)

where I is the original weakly illuminated image.
Bright Channel Enhancement. To make image look vivid, an ap-
proach which improves color saturation and illumination is desired.
The Retinex model assumes that illuminations of the RGB channels
are identical and what causes the difference in color is the noniden-
tical reflectance. Motivated by this assumption, we employ three
nonidentical enhanced illuminations of RGB channels to lift color
saturation.

More specifically, the bright channel of the original image is
extracted as illumination and a three-channel reflectance is yielded
according to Retinex model; then, the difference between RGB chan-
nels of the original image is enlarged by gamma correction to pro-
duce three nonidentical enhanced illuminations; finally, the bright
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Fig. 1. The architecture of DFN-based image enhancement method.

(a) I (b) Ich (c) Ilog (d) Ibce

Fig. 2. Sample images created by base enhancement methods.

channel enhancement derived image Ibce is obtained by multiplying
the reflectance with three nonidentical enhanced illuminations:

R =
I

max(I(r, g, b))
(2)

Ibce = I0.5 ·R (3)
As shown in Fig. 2, color saturation and brightness are significantly
improved in Ibce.

2.2. Network Architecture

Fig. 1 shows the architecture of DFN-based image enhancement
method. The base enhancer generated images are fed as the input to
the DFN, which generates three content-dependent confidence maps.
Weighted by these confidence maps, element-wise fusion is imple-
mented to combine the significant features of the derived images as
follows:

Ien = Ich · Cch + Ilog · Clog + Ibce · Cbce (4)

where Cch, Clog and Cbce represent the confidence maps corre-
sponding to derived images Ich, Ilog and Ibce, respectively, and Ien
is the final enhanced image.

Our DFN is designed based on Encoder-Decoder structure,
which has been demonstrated to produce excellent results in many
generative tasks [12] [13] [14]. DFN contains 3 Encoders and 3
Decoders. An Encoder consists of 3 convolution layers, and a De-
coder is the same except that the first convolution layer is replaced
by a deconvolution layer. Each convolution or deconvolution layer
is followed by a Leaky rectification layer with 0.1 slopes in the
negative range. The weight dimension of each layer is the same:
32×32×3×3 (output channels × input channels × filter height×
filter width), except that the first convolution layer and the last de-
convolution layer are 32×12×7×7 and 3×192×3×3, respectively.
In addition, we add skip connections to DFN. Skip connections
effectively accelerate training convergence and contribute to gener-
ating clearer results due to repeated use of feature maps [12]. The
feature maps produced by all Encoders and shallow Decoders are
delivered into the last Decoder, so the number of input channels of
the last layer is 192.

(a) Normal image (b) α = 0.98, γ = 1.9 (c) α = 0.95, γ = 2.6

Fig. 3. Synthetic weakly illuminated image examples.

2.3. Loss Function and Training Details

A recent study [15] indicates that combinational loss function per-
forms better than single mean square error (MSE). We train DFN
with the loss function formed by a combination of L1 and MSE loss-
es:

L(w) =
1

N

N∑
i=1

(0.3
∣∣∣∣F (Ii;w)− Ji

∣∣∣∣
1

+0.7
∣∣∣∣F (Ii;w)− Ji

∣∣∣∣2
2
)

(5)

WhereN is the number of training pairs, Ii is the weakly illuminated
image and Ji is the ground truth, and w and F represent the param-
eters and the activation of DFN, respectively. The ratio of L1 loss
to MSE is selected by grid search in set {(0,1), (0.3,0.7), (0.5,0.5),
(0.7,0.3), (1,0)}. Better results may be further produced if more ra-
tios were explored.

During training, the patch size is 128×128 and the batch size
is 10. ADAM [16] with default parameters is selected as the opti-
mizer. The initial learning rate is 0.00001 which decreases by 70%
every 20000 iterations. The total iterations are 80000, which takes
12 hours on a computer with Nvidia TITAN XP GPU.

2.4. Training Data

One major challenge in training-based methods is that a significant
number of image pairs under normal and weak illumination condi-
tions are required in the training process. Unfortunately, there is no
such dataset readily available. In the research area of image quali-
ty assessment [17] [18] and image enhancement [10] [19], gamma
correction is widely used to simulate low contrast and weak illu-
mination. Hence, we resort to synthesize training data by gamma
correction. First, 600 normal illuminated images are collected from
existing image quality assessment datasets [17] [20] and regarded
as the ground truth; then, gamma correction is performed on the V
channel of the HSV representation of the images to avoid color bias.
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(a) Inputs (b) NPEA (c) MF (d) LIME (e) LNET (f) CLAHE (g) LC (h) BCE (i) DFN (j) Ground
truth

Fig. 4. Sample results on the synthetic test set. From up to down, images are named owl, station, and ride, respectively.

Specifically, the weakly illuminated images are given by:

Vdark = αV γnormal, α ∈ (0.8, 1), γ ∈ (1.8, 3.4) (6)

Fig. 3 shows examples of synthesized images. Following the
assumption that image content is independent of illumination, we
randomly sample 7 pairs of parameters for each normal illuminat-
ed image. As a result, 4200 image pairs are synthesized in total,
of which 3500 pairs are used for training and the rest compose the
validation and test sets.

3. EXPERIMENT RESULTS

3.1. Test on Synthetic Images

We first compare our method with state-of-the-art methods NPEA
[6], MF [8], LIME [7] and LNET [11], and the three base image
enhancers CLAHE, Log Correction (LC) and Bright Channel En-
hancement (BCE) used in DFN. The comparison is conducted on a
synthetic test set which contains 50 image pairs of various scenes
and diverse illumination conditions. None of the 50 test image pairs
appear in our training dataset.

Fig. 4 shows sample experiment results from the synthetic test
set. NPEA, MF and LNET perform well on back-light image sta-
tion, but generate poor results on images of low light such as owl
and ride. The results of LIME exhibit the highest brightness and
contrast, but tend to over-enhance certain regions such as the color
distortion of the gravel road in image ride. CLAHE enhancer pro-
duces non-uniform illuminated results. The results of LC enhancer
show flat color. BCE enhancer generates images with over-saturated
color. The results produced by the proposed DFN method show more
natural color and are the closest to the ground truth. As shown in
Table 1, the quantitative evaluations using MSE, PSNR and SSIM
metrics confirm the superior performance of the proposed method.

Table 1. Average MSE, PSNR and SSIM values between enhanced
images and the ground truth of the synthetic test set

Metric NPEA MF LIME LNET CLAHE LC BCE DFN

MSE 1134 845 491 971 2170 1169 1464 288
PSNR 18.17 19.74 21.53 19.04 15.30 18.05 17.01 24.12
SSIM 0.832 0.863 0.873 0.834 0.742 0.808 0.757 0.896

3.2. Test on Real Weakly Illuminated Images

To further evaluate our method, we carry out experiments on real
weakly illuminated images collected from existing databases [6] [7]
[8]. Fig. 5 shows the visual comparison of different methods. Simi-
lar results as for synthetic images are observed. NPEA and MF often
generate lower contrast images. MF may also produce halo, for ex-
ample, near the tree region in the left part of image tower. On the
other hand, LIME often produces over-enhanced images and may
lose the fine details in the over-exposed brightest regions. LNET
generates unrealistic artifacts such as the sky in image tower and the
ground in image avenue. The results of CLAHE enhancer show il-
lumination distortion caused from over-enhanced contrast in some
bright regions. LC enhancer generates bright but colorless images.
BCE enhancer generates excessive color saturation. The proposed
method produces more reliable and visually more pleasing results,
and the details of scenes and objects are well restored. There is no
ground truth corresponding to real weakly illuminated images. Al-
ternatively, to quantitatively evaluate these methods, we use a blind
image quality assessment metric NIQE [21], which is based on sta-
tistical regularities derived from natural and undistorted images.

As shown in Table 2, NIQE scores of the proposed DFN are
ranked first in two images, second in one and second in average.
Although LNET achieves first in average, the visual artifacts exist in
some result images of LNET. For example, the NIQE score of LNET
is the lowest in image duck, but the ground is still too dark in the re-
sult image as shown in Fig. 5(e). The NIQE results indicate that the
proposed method shows advantage in performance on real weakly
illuminated images in terms of image quality and naturalness.

Table 2. NIQE evaluation on real weakly illuminated images

Image NPEA MF LIME LNET CLAHE LC BCE DFN

meeting 3.22 3.45 3.83 3.08 3.43 3.01 3.15 3.11
girl 2.07 2.13 1.88 1.70 2.00 1.56 1.80 1.53

mountain 2.02 2.08 1.98 2.01 2.48 2.04 2.30 1.95
tower 3.00 3.37 3.09 3.09 3.51 3.37 3.42 3.07

avenue 2.52 2.40 2.32 2.28 2.27 2.41 2.38 2.30
duck 2.81 2.82 2.59 2.25 2.64 2.28 2.56 2.51

average 2.61 2.71 2.61 2.40 2.72 2.45 2.60 2.41
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(a) Inputs (b) NPEA (c) MF (d) LIME (e) LNET (f) CLAHE (g) LC (h) BCE (i) DFN
Fig. 5. Sample real weakly illuminated images. From up to down, images are named meeting, girl, mountain, tower, avenue and duck,

respectively.

(a) Patch of image
meeting

(b) Generated by
DFN

(c) Generated by
DEN

Fig. 6. Visual comparisons between DFN and DEN enhanced
image.

3.3. Effectiveness of Fusion Design

It should be noted that the outputs of DFN are confidence maps in-
stead of the final enhanced image. To better understand the effec-
tiveness of the fusion design in DFN, we train a network DEN (Di-
rect Enhancement Network) to directly generate an enhanced image
without the fusion operation. The architecture of DEN is the same
as DFN except that the outputs of DEN are regarded as RGB chan-
nels of the final enhanced image instead of the confidence maps for
fusion.

Fig. 6 shows the visual comparisons of the enhanced image gen-
erated by DFN and DEN respectively. As shown in the yellow box,
more structural details are kept in DFN enhanced images. By con-
trast, DEN directly generates enhanced results, and as a result image
details are more likely to be distorted by the convolution operation
and the nonlinear activation within the network.

3.4. Artificial Edges

Due to the non-edge-preserving sliding windows convolutions in
network, smoothing edges appear on confidence maps, resulting arti-
ficial edges exist in final fused images, especially when the intensity
difference between the two sides of the edge is large. To some ex-

(a) Weakly
illuminated image

(b) Enhanced by DFN
without guided

filtering post-process

(c) Enhanced by DFN
with guided filtering

post-process

Fig. 7. Artificial edges and guided filtering post-process.

tend, this case can be alleviated by manipulating guided filtering [9]
on confidence maps. As shown in Fig.7, the artificial edges are faded
when the confidence maps are guided filtered using the log corrected
image as guidance image. However, the limitation is that the guided
filtering post-process is fully independent of network training, which
make the trained network parameters a sub-optimal solution, so how
to embed the edge-preserving operation into our network needs to be
explored in future works.

4. CONCLUSION

We propose an end-to-end deep fusion network based approach for
the enhancement of weakly illuminated images without estimat-
ing illumination explicitly. By training on synthetic images, the
proposed DFN learned to generate confidence maps to adaptively
fuse three derived images created by base image enhancement tech-
niques. Experiments on both synthetic and real weakly illuminated
images demonstrate that the proposed DFN approach can produce
enhanced results of better subjective and objective quality than state-
of-the-art methods.
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