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ABSTRACT

An active research topic in recent years is to design tone map-

ping operators (TMOs) that convert high dynamic range (H-

DR) to low dynamic range (LDR) images, so that HDR im-

ages can be visualized on standard displays. Nevertheless,

most existing work has been done in the absence of a well-

established and subject-validated image quality assessmen-

t (IQA) model, without which fair comparisons and further

improvement are difficult. Recently, a tone mapped image

quality index (TMQI) was proposed, which has shown to have

good correlation with subjective evaluations of tone mapped

images. Here we propose a substantially different approach to

design TMO, where instead of using any pre-defined system-

atic computational structure (such as image transformation or

contrast/edge enhancement) for tone mapping, we navigate

in the space of all images, searching for the image that op-

timizes TMQI. The navigation involves an iterative process

that alternately improves the structural fidelity and statistical

naturalness of the resulting image, which are the two funda-

mental building blocks in TMQI. Experiments demonstrate

the superior performance of the proposed method.

Index Terms— tone mapping, tone mapped image quali-

ty index (TMQI), high dynamic range imaging, image quality

assessment, structural fidelity, statistical naturalness

1. INTRODUCTION

High dynamic range (HDR) images have greater dynamic

ranges of intensity levels than standard or low dynamic range

(LDR) images, so as to capture the wide luminance variations

in real scenes [1]. A problem often encountered in practice is

how to visualize HDR images on regular displays which are

designed to display LDR images. To overcome this problem,

an increasing number of tone mapping operators (TMOs) that

convert HDR to LDR images have been developed [1–6]. Be-

cause of the reduction in dynamic range, tone mapped images

inevitably suffer from information loss, but how to evaluate

the quality and information loss of tone mapped images is

still an unresolved problem.

Subjective evaluation is the most straightforward quality

measure [7–10], but is extremely time consuming, expensive

and is difficult to be incorporated into automatic optimiza-

tion algorithms [11]. Objective quality assessment of tone

mapped images is a challenging problem. The original H-

DR and the tone mapped LDR images have different dynam-

ic ranges, and thus typical objective image quality measures

such as peak signal-to-noise ratio (PSNR) and the structural

similarity index (SSIM) [11,12] are not applicable. Little has

been done in developing objective methods for HDR images.

The HDR visible difference predictor (HDR-VDP) [1, 13] is

designed to predict the visibility of distortions between two

HDR images of the same dynamic range. A dynamic range

independent quality measure was proposed based on HDR-

VDP in [14] that produces three quality maps, but does not

provide an overall quality score. Recently, a tone mapped im-

age quality index (TMQI) was proposed [15] that measures

the quality of an LDR image using its corresponding HDR

image as reference. TMQI not only provides an overall qual-

ity assessment of a tone mapped image, but also produces a

structural fidelity map that indicates how well the local struc-

tural details are preserved at each spatial location.

The purpose of this work is to develop a novel TMO that

utilizes TMQI as the optimization goal. Unlike existing T-

MOs, we do not pre-define a computational structure that in-

volves image transformations or gradient/edge estimation and

enhancement. Instead, we operate in the space of images, s-

tarting from any given point as the initial image and moving

our image towards the direction of improving TMQI. Exper-

iments show that this approach leads to consistent enhance-

ment of the perceptual quality of tone mapped images with a

wide variety of initial images.

2. TONE MAPPED IMAGE QUALITY INDEX (TMQI)

This section provides a brief background description of the T-

MQI algorithm proposed in [15]. This is necessary in explain-

ing the TMO method based on TMQI-optimization in Sec-

tion 3, which is the main contribution of this work. Detailed

descriptions of the TMQI algorithm can be found in [15].

Let X and Y be the HDR image and the tone mapped L-

DR image, respectively. The fundamental idea behind TMQI

is that a good quality tone mapped image should achieve a

good compromise between two key factors − structural fi-
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delity and statistical naturalness. The TMQI computation is

given by [15]

TMQI(X,Y) = a[S(X,Y)]α + (1− a)[N(Y)]β , (1)

where S and N denote the structural fidelity and statistical

naturalness, respectively. The parameters α and β determine

the sensitivities of the two factors, and 0 ≤ a ≤ 1 adjusts the

relative importance between them. Both S and N are upper-

bounded by 1 and thus TMQI is also upper-bounded by 1.

The computation of the structural fidelity S is patch-

based. Let x and y be two image patches extracted from X
and Y, respectively. An SSIM-motivated local structural fi-

delity measure is defined as

Slocal(x,y) =
2σ̃xσ̃y + C1

σ̃2
x + σ̃2

y + C1
· σxy + C2

σxσy + C2
, (2)

where σx, σy and σxy denote the local standard deviations

and cross correlation between the two corresponding patch-

es, respectively. C1 and C2 are stability constants. The first

term is a modification of the local contrast comparison com-

ponent in SSIM [12], and the second term is the same as

the structure comparison component in SSIM [12]. The lo-

cal contrast comparison term is based on two considerations.

First, as along as the contrast in the HDR and LDR patches

are both significant or both insignificant, the contrast differ-

ences should not be penalized. Second, the measure should

penalize the cases in which the contrast is significant in one

of the patches but not in the other. In TMQI [15], to assess

the significance of local contrast, the local standard deviation

σ is passed through a nonlinear mapping function given by

σ̃ =
1√
2πθσ

∫ σ

−∞
exp

[
− (t− τσ)

2

2θ2σ

]
dt , (3)

where τσ is a contrast threshold and θσ = τσ/3 [15]. The

local structural fidelity measure Slocal is applied using a slid-

ing window that runs across the image, resulting in a map that

reflects the variation of structural fidelity across space. Fig-

ure 1(f) shows an example of such a structural fidelity map

computed for the tone mapped image of Fig. 1(a). Note that

due to overexposure, the text details of the brightest book re-

gion are missing, which are well indicated in the map. Finally,

the quality map is averaged to provide a single overall struc-

tural fidelity measure of the image

S(X,Y) =
1

M

M∑
i=1

Slocal(xi,yi) , (4)

where xi and yi are the i-th patches in X and Y, respectively,

and M is the total number of patches.

The statistical naturalness model N is derived from the s-

tatistics of about 3,000 gray-scale images representing many

different types of natural scenes [15]. It was found that the

histograms of the mean and standard deviation (std) can be

well fitted by a Gaussian density function Pm and a Beta

density function Pd, respectively [15]. Based on recent vi-

sion science studies on the independence of image brightness

and contrast [16], the statistical naturalness is modeled as the

product of the two density functions [15]

N(Y) =
1

K
Pm Pd , (5)

where K is a normalization factor given by K =
max{PmPd}. This constrains the N measure to be bound-

ed between 0 and 1.

3. TONE MAPPING BY OPTIMIZING TMQI

Assuming TMQI to be the quality criterion of tone mapped

images, the problem of optimal tone mapping can be formu-

lated as

Yopt = argmax
Y

TMQI(X,Y) . (6)

This is a challenging problem due to the complexity of TMQI

and the high dimensionality (the same as the number of pixels

in the image). We propose an iterative algorithm that starts

from any initial image Y0 and searches for the best solution

in the image space. Specifically, in each iteration, we first

adopt a gradient ascent algorithm to improve the structural

fidelity S. We then solve a constrained optimization problem

to improve the statistical naturalness N . These two steps are

applied alternately until convergence. Details of the algorithm

are elaborated as follows.

In the k-th iteration, given the result image Yk from the

last iteration, a gradient ascent algorithm is first applied to

improve the structural fidelity:

Ŷk = Yk + λGY|Y=Yk
, (7)

where GY = ∇YS(X,Y) is the gradient of S(X,Y) with

respect to Y, and λ controls the updating speed. To compute

GY, we rewrite the local structural fidelity measure in (2) as

Slocal(x,y) =
A1 A2

B1 B2
, (8)

where A1 = 2σ̃xσ̃y+C1, B1 = σ̃2
x+σ̃2

y+C1, A2 = σxy+C2,

and B2 = σxσy +C2, respectively. Representing both image

patches as column vectors of length Nw, we have

μy =
1

Nw
1T y (9)

σ2
y =

1

Nw − 1
(y − μy)

T (y − μy) (10)

σxy =
1

Nw − 1
(x− μx)

T (y − μy) . (11)

The gradient of local structural fidelity measure with respect

to y can then be expressed as

∇ySlocal(x,y) =
(A′

1A2 +A1A
′
2)

B1B2
− (B′

1B2 +B1B
′
2)A1A2

(B1B2)2
,

(12)



where A′
1 = ∇yA1, B′

1 = ∇yB1, A′
2 = ∇yA2, and B′

2 =
∇yB2, respectively. Noting that ∇yσy = (y − μy)/(Nwσy)
and ∇yσxy = (x− μx)/Nw, we have

A′
1=2σ̃x∇yσ̃y

=
2σ̃x√
2πθσ

exp

[
− (σy − τσ)

2

2θ2σ

]
· ∇yσy

=

√
2

π

σ̃x

Nwθσσy
exp

[
− (σy − τσ)

2

2θ2σ

]
(y − μy) (13)

B′
1=2σ̃y∇yσ̃y

=

√
2

π

σ̃y

Nwθσσy
exp

[
− (σy − τσ)

2

2θ2σ

]
(y − μy) (14)

A′
2=

1

Nw
(x− μx) (15)

B′
2=σx∇yσy =

σx

Nwσy
(y − μy) . (16)

Plugging (13), (14), (15) and (16) into (12), we obtain the

gradient of local structural fidelity. Finally, the gradient of

the global structural fidelity is given by

GY = ∇YS(X,Y) =
1

M

M∑
i=1

RT
i ∇ySlocal(xi,yi) , (17)

where xi = Ri(X) and yi = Ri(Y) are the i-th image

patches, Ri is the operator that takes the i-th local patch from

the image, and RT
i places the patch back into the correspond-

ing location in the image.

After the structural fidelity update step of (7), we obtain

an intermediate image Ŷk, which will be further updated to

Yk+1 such that the statistical naturalness is improved. This

is done by a point-wise intensity transformation through a

three-segment equipartition monotonic piecewise linear func-

tion given by

yik+1 =

⎧⎨
⎩
(3/L)aŷik 0 ≤ ŷik ≤ L/3
(3/L)(b− a)ŷik + (2a− b) L/3 < ŷik ≤ 2L/3
(3/L)(L− b)ŷik + (3b− 2L) 2L/3 < ŷik ≤ L

(18)

where L is the dynamic range of the tone mapped images, and

the parameters a and b (where 0 ≤ a ≤ b ≤ L) need to be se-

lected so that the mapped image Yk+1 = {yik+1 for all i} has

increased likelihood of mean μk+1 and std σk+1 values based

on the statistical naturalness models Pm and Pd described in

Section 2. To solve for a and b, we first decide on the desired

mean and std values by

μd
k+1 = μ̂k + λm(cPm

− μ̂k)

σd
k+1 = σ̂k + λd(cPd

− σ̂k) , (19)

where μ̂k and σ̂k are the mean and std of Ŷk, respectively.

cPm
and cPd

are the values corresponding to the peaks in the

Pm and Pd models, respectively. λm and λd are step sizes that

controls the updating speed. As such, finding the parameters

a and b can be formulated as an optimization problem

{a, b}opt = argmin
{a,b}

||μk+1 − μd
k+1||2 + η||σk+1 − σd

k+1||2

subject to 0 ≤ a ≤ b ≤ L , (20)

where η controls the relative importance between the mean

and std terms. In our implementation, Matlab function fmin-
con with interior-point algorithm is used to solve this opti-

mization problem. Once the optimal values of a and b are ob-

tained, they are plugged into (18) to create the output image

Yk+1, which is subsequently employed as the input image in

the (k + 1)-th iteration.

The iteration continues until convergence, which is deter-

mined by checking the difference between the images of con-

secutive iterations. Specifically, when ||Yk+1−Yk|| < ε, the

iteration stops. The proposed algorithm involves totally five

parameters, which are set empirically to ε = 0.01, λ = 0.3,

λm = λd = 0.03 and η = 1 in all of our experiments.

4. EXPERIMENTAL RESULTS

The proposed algorithm is tested on a database of 14 HDR

images, which include various contents such as humans, land-

scapes, architectures, as well as indoor and night scenes [15].

Due to space limit, only partial results are presented here, but

similar performance is observed throughout the database.

We first examine the roles of the structural fidelity and

statistical naturalness components separately. In Fig. 1, we

start with an initial “desk” image created by Reinhard’s T-

MO [2] (one of the best TMOs based on several independent

subjective tests [9, 15]), and then apply the proposed iterative

algorithm but using structural fidelity updates only. It can be

observed that the structural fidelity map is very effective at

detecting the missing structures (e.g., text in the book region,

and fine textures on the desk), and the proposed algorithm

successfully recovers such structures after a sufficient num-

ber of iterations. The improvement of structure details is also

well reflected by the structural fidelity maps, which eventually

evolve to a nearly uniform white image. By contrast, in Fig. 2,

the initial “building” image is created by a Gamma correction

mapping (γ = 2.2), and we apply the proposed iterative algo-

rithm but using statistical naturalness updates only. With the

iterations, the overall brightness and contrast of the image are

significantly improved, leading to a more visually appealing

and natural-looking image.

The results shown in Figs. 3 and 4 are obtained by apply-

ing the full proposed algorithm. In Fig. 3, the initial images

are created by Reinhard’s TMO [2]. Although the initial im-

age of Fig. 3(a) has a seemingly reasonable visual appearance,

the fine details of the woods, the brick textures of the tower,

and the details in the clouds are fuzzy or invisible. The pro-

posed algorithm recovers these fine details and makes them

much sharper, as can be seen in Fig. 3(b). In addition, the



(a) initial image (b) after 10 iterations (c) after 50 iterations (d) after 100 iterations (e) after 200 iterations

(f) initial image, S = 0.689 (g) 10 iterations, S = 0.921 (h) 50 iterations, S = 0.954 (i) 100 iterations, S = 0.961 (j) 200 iterations, S = 0.966

Fig. 1. Tone mapped “desk” images and their structural fidelity maps. (a): initial image created by Reinhard’s algorithm [2];

(b)-(e): images created using iterative structural fidelity update only; (f)-(j): corresponding structural fidelity maps of (a)-(e),

where brighter indicates higher structural fidelity. All images are cropped for better visulization.

(a) initial image, N = 0.000 (b) 10 iterations, N = 0.001 (c) 50 iterations, N = 0.428 (d) 100 iterations, N = 0.868 (e) 200 iterations, N = 0.971

Fig. 2. Tone mapped “building” images. (a): initial image created by Gamma correction (γ = 2.2); (b)-(e): images created

using iterative statistical naturalness update only.

(a) S=0.847, N = 0.746 (b) S=0.971, N = 1.000 (c) S=0.787, N = 0.966 (d) S=0.970, N = 0.999

Fig. 3. Tone mapped “bridge” and “lamp” images. (a) and (c): initial images created by Reinhard’s algorithm [2]; (b) and (d):

images after applying the proposed algorithm.



(a) S=0.148, N=0.000 (b) S=0.959, N=0.997 (c) S=0.521, N=0.038 (d) S=0.976, N=0.999

Fig. 4. Tone mapped “memorial” and “woman” images. (a) and (c): initial images created by Gamma correction; (b) and (d):

images after applying the proposed algorithm.

overall appearance is more pleasant due to statistical natu-

ralness update. Similar results are also observed in Fig. 3(d),

where the details on the wall, scribbling papers and the drawer

are well recovered. In Fig. 4, the initial images are obtained

by applying Gamma correction mapping (γ = 2.2), which

creates dark images with missing details. Starting from these

images, the proposed iterative algorithm successfully recov-

ers most details in the images and presents more realistic and

pleasant appearance. It is worth mentioning that the proposed

method often recovers image details that are unseen in the ini-

tial images, for example, the wall and door in the background

are missing in Fig. 4(c) but are clearly visible in Fig. 4(d).

We test the proposed method not only on various images

with different contents, but also using initial images generated

by a variety of TMOs. Due to space limit, only partial results

are reported in Table 1, where it can be seen that the pro-

posed algorithm consistently converges to images with both

high structural fidelity and high statistical naturalness, which

produces high TMQI values even when the initial images are

created by the most competitive state-of-the-art TMOs.

To have a close look at the iterative behavior of the pro-

posed method, Figs. 5 and 6 show the structural fidelity and

statistical naturalness measures as functions of iteration using

different initial images as the starting point. There are several

useful observations. First, both measures increase monoton-

ically with iterations. Second, the proposed algorithm con-

verges in all cases regardless using simple or sophisticated

TMO results as initial images. Third, different initial images

may result in different converged images. From these obser-

vations, we conclude that the proposed iterative algorithm is

well behaved, but the high-dimensional search space is com-

plex and contains many local optima, and the proposed algo-

rithm may be trapped in one of the local optima.

The computation complexity of the proposed algorithm

increases linearly with the number of pixels in the image. Our

unoptimized Matlab implementation takes around 4 seconds

per iteration for a 341 × 512 image on an Intel Quad-Core

2.67 GHz computer.
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Fig. 5. Structural fidelity as a function of iteration with initial

“woods” images created by different TMOs.

5. CONCLUSIONS AND DISCUSSIONS

We propose a novel approach to design TMOs by navigating

in the space of images to find the optimal image in terms of

TMQI. The navigation is based on an iterative approach that

alternates between improving the structural fidelity preserva-

tion and enhancing the statistical naturalness of the image.

Experimental results show that both steps contribute signifi-

cantly to the improvement of the overall quality of the tone

mapped image. Our experiments also show that the proposed

method is well behaved, and effectively enhances the image



Table 1. TMQI comparison between initial and converged images

Image Gamma mapping Reinhard [2] Drago [3] Lognormal mapping

Bridge
initial image 0.8093 0.9232 0.8848 0.7439

converged image 0.9928 0.9929 0.9938 0.9944

Lamp
initial image 0.5006 0.9387 0.8717 0.7371

converged image 0.9906 0.9925 0.9910 0.9894

Memorial
initial image 0.4482 0.9138 0.8685 0.7815

converged image 0.9895 0.9894 0.9868 0.9867

Woman
initial image 0.6764 0.8891 0.8918 0.8026

converged image 0.9941 0.9947 0.9943 0.9937
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Fig. 6. Statistical naturalness as a function of iteration with

initial “woods” images created by different TMOs.

quality from a wide variety of initial images, including those

created from state-of-the-art TMOs.

The current work opens the door to a new class of TMO

approaches. Many topics are worth further investigations.

First, as is the case for any algorithm operating in complex

high-dimensional space, the current approach only finds local

optima. Deeper understanding of the search space is desir-

able. Second, the current implementation is computationally

costly and requires a large number of iterations to converge.

Fast search algorithms are necessary to accelerate the itera-

tions. Third, the current statistical naturalness model is rather

crude. Incorporating advanced models of image naturalness

into the proposed framework has great potentials in creating

more natural-looking tone mapped images.
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