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ABSTRACT

With the rapid growth of streaming media applications, there
has been a strong demand of objective models that can pre-
dict end users’ quality-of-experience (QoE) when watching
the video being streamed to their display devices. Existing
methods typically use bitrate and global statistics of stalling
events as the QoE indicators. This is problematic for two rea-
sons. First, using the same bitrate to encode different video
content could result in drastically different presentation QoE.
Second, the interactions between presentation visual quality
and playback stalling are not accounted for. Here we propose
a novel QoE prediction approach that takes into consideration
the instantaneous quality degradation due to perceptual video
presentation impairment, the playback stalling events caused
by imperfect network delivery, and the instantaneous interac-
tions between presentation quality and playback stalling. The
proposed algorithm demonstrates strong promise when tested
using a subject-rated video streaming QoE database.

Index Terms— quality-of-experience, video stream-
ing, instantaneous quality, subjective experiment, adaptive
streaming

1. INTRODUCTION

In the past decade, there has been a tremendous growth in
streaming media applications, thanks to the fast development
of network services and the remarkable growth of smart mo-
bile devices. The total number of unique viewers of VoD
in the US is more than 190 million in June 2015 and keeps
increasing [1]. Adaptive HTTP streaming protocols such as
HTTP Live Streaming (HLS) [2], Silverlight Smooth Stream-
ing (MSS) [3], HTTP Dynamic Streaming (HDS) [4], and Dy-
namic Adaptive Streaming over HTTP (DASH) [5] achieve
decoder-driven rate adaptation by providing multiple video
streams of each content in a variety of bitrates and breaking
these video streams into small HTTP file segments. The me-
dia information of each segment is stored in a manifest file,
which is created at the server and transmitted to the client
for the players to find the specification and location of each
segment. Throughout the streaming process, the player adap-
tively switches among the available streams by selecting the
corresponding segments based on the playback rate, the buffer

condition and the instantaneous TCP throughput.
How to deliver videos over the network for optimal QoE

of end consumers has been the central goal of modern video
delivery services. A survey [6] is carried out to investigate the
user preference on the type of video delivery services. Com-
parison categories consisting of content, timing, quality, ease-
of-use, portability, interactivity, and sharing is presented to a
group of respondents. Although such subjective user stud-
ies provide reliable evaluations, they are inconvenient, time-
consuming and expensive. Highly accurate, low complexity
objective models are desirable to enable efficient design of
quality-control protocols for the media delivery systems.

1.1. Related work

Objective video quality assessment (VQA) of static video
playback (i.e., with perfect playback smoothness) has been an
active research topic in recent years [7][8]. In practice, for the
sake of operational convenience, bitrate is often used as the p-
resentation quality indicator. However, using the same bitrate
to encode different video content could lead to drastically d-
ifferent visual quality. In addition, different encoders operat-
ed at the same bitrate but different operational or complexity
modes could also cause large quality variations in the com-
pressed video streams. In order to have a better estimation of
video quality, it is necessary to look deep into the pixels of
the decoded video frames. For this purpose, the simplest and
most widely used VQA measures are the mean squared er-
ror (MSE) and peak signal-to-noise ratio (PSNR), which are
simple to calculate and mathematically convenient in the con-
text of optimization, but unfortunately are not well matched
to perceived visual quality [9]. Perceptually more meaning-
ful VQA models have been drawing significant attention in
recent years, exemplified by the success of SSIM [10], MS-
SSIM [11], MOVIE [12], VQM [13] and SSIMplus [14]. All
these models are only applicable when the playback proce-
dure can be accurately controlled. However, video stream-
ing services, due to network impairments, may suffer from
playback stallings that could significantly degrade user expe-
rience. Currently, research on QoE modelling for online video
streaming is still at an early stage.

Hoßfeld et al. [15] made one of the first attempts to quan-
tify QoE based on playback stallings. An exponential re-
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lationship is observed between QoE and two global stalling
factors: the number and length of stalling events. Oyman et
al. [16] defined QoE as the probability of playback stalling
but did not account for the significant difference between
the impact of initial buffering and playback stalling [17][18].
Yeganeh et al. [19] modelled the dissatisfaction of playback
stalling with a raised cosine function and the recovery of sat-
isfaction level during the playback state with a linear model.
Deepti et al. [20] employed a Hammerstein-Wiener model by
using the stalling length, the total number of stalls, the time
since the previous stall, and the inverse stall density as the
key features to predict the instantaneous experience at each
moment. One common problem of all these approaches is the
lack of an effective way to characterize the interactions be-
tween video presentation quality and playback smoothness.

Apparently both video presentation quality and playback
smoothness play important roles in QoE, but very few work-
s have investigated the connections between them. Garcia
et al. [21] focused on the progressive download video ser-
vices and investigated the quality impact due to initial load-
ing, stalling, and compression for high definition sequences.
They observed an additive impact of stalling and compres-
sion on perceived QoE and reported that the stalling effect
is independent of the video content at high bitrate. Ricardo
et al. [22] approximated the effect of frame drop and image
sharpness separately, and took the product of the two terms to
predict the overall QoE. Xue et al. [23] estimated the packet-
level video quality from QP [24] and introduced the concept
of intensity of the storyline to weight the impact of stalling.
However, neither work provides insights on the interaction
between the visual image quality and the stalling events.

1.2. Proposed scheme and major contributions

In this work, we consider the QoE of streaming video as cu-
mulative presentation quality altered by interruptive stream-
ing events; which include initial buffering and playback
stallings. The instantaneous quality of the video is captured
by advanced VQA models which have been proven to be ef-
fective in static video quality prediction. The quality loss due
to stalling is modelled with a exponential decaying function,
adapted to the user expectation of the video presentation qual-
ity.

Our major contributions are twofold. First, we investigate
the interactions between video presentation quality and play-
back smoothness. Our experiment shows that the video pre-
sentation quality of the freezing frame correlates with the dis-
satisfaction level of the stalling event. This is perhaps the first
time to explicitly identify the dependence of the two QoE in-
fluencing factors. Second, we formulate a joint video stream-
ing QoE model that incorporates both the presentation VQA
and the cognitive influence of playback smoothness. The pro-
posed model is not only superior to state-of-the-art models in
overall QoE prediction, but also computational efficient. This

may help us better understand the perceptual experience of
video streaming services in realistic scenarios. The instanta-
neous QoE prediction has the potentials to be employed in the
optimization of adaptive media streaming systems.

2. INTERACTION BETWEEN PLAYBACK
SMOOTHNESS AND PRESENTATION QUALITY

2.1. Subjective experiment

Despite the significant amount of effort on the presentation
VQA and stalling-centric QoE models, not much has been
dedicated to the fundamental relationship between the two
QoE factors. Here we briefly present a subjective study we
carried out to understand this relationship. Due to space limit
and the major focus of the current paper, more details of the
subjective study will be reported in other publications.

A video streaming database of 20 pristine high-quality
videos of size 1920× 1080 are selected to cover diverse con-
tent types, including humans, plants, natural scenes, architec-
tures and computer-synthesized sceneries. All videos have
the length of 10 seconds. We compressed each of the videos
using an x264 encoder at three bitrates (500 kbps, 1500 kbps
and 3000 kbps), resulting in 80 videos. We then simulated
the initial buffering and stalling events at the beginning and
in the middle of each video. All buffering and stalling events
last 5 seconds. This results in a total of 240 test videos. A
total of 25 naı̈ve subjects, including 13 males and 12 females,
participated in the subjective test, after which the mean opin-
ion score (MOS) of each test video (including the videos with
and without buffering/stalling) is computed as the average of
all subjective scores on the same video. Two outliers are re-
moved based on the outlier removal scheme suggested in [25]

State-of-the-art VQA models were tested on the videos
without buffering/stalling and SSIMplus [14] turns out to
have the highest correlation with MOS, suggesting that SSIM-
plus provides a reasonable prediction on the video presenta-
tion quality. Another significant advantage of SSIMplus is
that it provides device and viewing condition dependent qual-
ity evaluations, and thus the same video viewed on a different
device (e.g., a TV versus a smart phone) would be given dif-
ferent SSIMplus scores, a desirable feature that is lacking in
other VQA approaches.

2.2. Analysis

The major purpose of this subjective experiment is to gain in-
sights about whether the stalling events are independent of the
video presentation quality. If the answer is yes, then regard-
less of the presentation quality, stallings will have the same
impact on the overall QoE scores. Assuming an additive rela-
tionship between stalling and presentation quality as in [21],
we are expecting a near constant quality drop across different
compression levels when a stalling event occurs in the middle
of the sequences.
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Fig. 1: Presentation video quality vs. penalty of stalling.

Fig. 1 shows a scatter plot of the instantaneous quality
of the freezing frame predicted by SSIMplus and the MOS
degradation for both initial delay and playback stalling. It
can be observed that for the stalling at the same temporal in-
stance and of the same duration, human subjects tend to give
a higher penalty to the video with a higher instantaneous pre-
sentation quality at the freezing frame. One explanation may
be that there is a higher viewer expectation when the video
presentation quality is high, and thus the interruption caused
by stalling make them feel more frustrated.

3. QOE MODEL

Motivated by the observation and analysis above, we develop
a QoE prediction model by incorporating the video presenta-
tion quality and the impact of buffering/stalling events.

3.1. Video Presentation Quality

For each frame in the streaming video, its instantaneous video
presentation quality Pn can be estimated at the server side by
a frame-level VQA model before transmission

Pn = V (Xn, Rn), (1)

where Xn and Rn are the n-th frame of the streaming video
and pristine quality video, and V (·) is a full reference VQA
operator. The computed quality score V (Xn, Rn) can either
be embedded into the manifest file that describes the specifi-
cations of the video, or carried in the metadata of the video
container. The manifest is transmitted to the client side such
that its information is available to the client. In commonly
used streaming protocols such as MPEG-DASH, the partially
decoded frame will not be sent for rendering, and thus view-
ers will see the last successfully decoded frame during the
stalling interval. Thus, for a stalling moment n in the in-
terruption period [i, j], the video presentation quality at the

instance, Pn, is the same as the quality of the last decoded
frame

Pn = Pi−1, for n = i, i+ 1, ..., j. (2)

3.2. Stalling Experience Quantification

To simplify the formulation, we assume the influence of
each stalling event is independent and additive. As such,
we can analyze each stalling event separately and compute
the overall effect by aggregating them. Note that each
stalling event divides the streaming session time line into
three non-overlapping intervals, i.e., the time intervals before
the stalling, during the stalling, and after the stalling. We will
discuss the three intervals separately because the impact of
the stalling event on each of the intervals are different.

First, we assign zero penalty to the frames before the
stalling occurs when people have not experienced any inter-
ruption. Second, as a playback stalling starts, the level of dis-
satisfaction increases as the stalling goes on till playback re-
sumes. The exponential decay function has been successfully
used in previous studies [26][15]. The use of exponential de-
cay assumes an existence of QoE loss saturation to the num-
ber and length of stalling, and low tolerance to jitters compar-
ing to the other commonly used utility function such as log-
arithm and sigmoid. Here we approximate the QoE loss due
to a stalling event with an exponential decay function similar
to [15]. Third, QoE also depends on a behavioural hysteresis
“after effect” [27]. In particular, a previous unpleasant view-
ing experience caused by a stalling event tends to penalize the
QoE in the future and thus affects the overall QoE. The extent
of dissatisfaction starts to fade out at the moment of playback
recovery because observers start to forget the annoyance. To
model the decline of memory retention of the buffering event,
we employ the Hermann Ebbinghaus forgetting curve [28]

M = exp

{
− t

T

}
, (3)

where M is the memory retention, T is the relative strength
of memory, and t is the time instance.

Assume that the k-th stalling event locates at [ik, ik + lk],
where lk is the length of stall, a piecewise model is construct-
ed to estimate the impact of each stalling event on the QoE

Sk(t) =



Pik−1

(
−1 + exp

{
−
(
tf − ik
T0

)})
ik
f ≤ t ≤ ik+lk

f

Pik−1

(
−1 + exp

{
−
(
lk
T0

)})
·
(
exp

{
−
(
tf − ik − lk

T1

)})
t > ik+lk

f

0 otherwise

(4)
where f is the frame rate in frames/second, and T0, T1 and
Sk(t) represent the rate of dissatisfaction, the relative strength
of memory and the experience of the k-th stalling event at



time t, respectively. Pik−1, the scaling coefficient of the de-
cay function, has two functions: 1) it reflects the viewer ex-
pectation to the future video presentation quality, and 2) it
normalizes the stalling effect to the same scale of VQA ker-
nel. This formulation is qualitatively consistent with the re-
lationship between the two QoE factors discussed in the pre-
vious section. In addition, since the impact of initial buffer-
ing and stalling are different, we have two sets of parameters:
{T init

0 , T init
1 } for initial delay and {T0, T1} for other play-

back stallings, respectively. We also assume that the initial
expectation P0 is a constant. In this way, the initial buffering
time is proportional to the cumulated experience loss.

The instant QoE drop due to stalling events is computed
by aggregating the QoE drop caused by each stalling event
and is given by

S(t) =
N∑

k=1

Sk(t), (5)

where N is the total number of stalling events.

3.3. Overall QoE

The instantaneous QoE at each time unit n in the streaming
session can be represented as the aggregation of the two chan-
nels

Qn = Pn + Sn. (6)

In practice, one usually requires a single end-of-process QoE
measure. We use the mean value of the predicted QoE over
the whole playback duration to evaluate the overall QoE. To
reduce the memory usage, the end-of-process QoE can be
computed in a moving average fashion

An =
(n− 1)An−1 +Qn

n
, (7)

where An is the cumulative QoE up to the n-th time instance
in the streaming session. An example of each channel and the
final output of the model is illustrated in Fig. 2.

4. TEST

To demonstrate the effectiveness of our framework, four VQA
algorithms, namely PSNR, SSIM [10], MSSSIM [11] and S-
SIMplus [14], are employed as the frame-level video presen-
tation quality measure. Throughout the paper, the proposed
model uses the following parameter settings: T init

0 = 2,
T init
1 = 0.5, T0 = 1, T1 = 1.2 and P0 = 0.8 · |(V (·)|, where
|V (·)| is the range of adopted VQA kernel. Then Spearman
rank order correlation coefficients (SRCC) and Pearson’s lin-
ear correlation coefficients (PLCC) between the predicted and
the ground truth MOS were computed to assess the predic-
tion monotonicity and prediction accuracy. All presentation
VQA measures mentioned above without incorporating the
proposed method are also included in the comparison as the
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Fig. 2: An illustrative example of and channel responses at
each frame. (a) video presentation quality of the static video
at each frame. ‘*’ indicates the position of stalling. (b) video
presentation quality of the streaming video during playback
at each frame. ‘*’ indicates the position of stalling and ‘o’

indicates the position of recovery. (c) QoE drop due to each
stalling events at each frame. The solid curve shows the QoE
drop due to initial buffering and the dashed curve shows the
QoE drop due to playback stalling. (d) Overall QoE at each

time instance during playback.



Table 1: SRCC and PLCC performance comparison of QoE models.

FTW [15] PSNR PSNR+proposed SSIM [10] SSIM+proposed MS-SSIM [11] MS-SSIM+proposed SSIMplus [14] SSIMplus+proposed
SRCC 0.3154 0.6715 0.7492 0.8177 0.9009 0.7928 0.8807 0.8024 0.9007
PLCC 0.3133 0.6663 0.7391 0.8432 0.9015 0.8193 0.8776 0.8350 0.9026

benchmark. In all of our tests, all video sequences were em-
ployed (i.e., both videos with and without stalling events are
included).

Fig. 3 shows the scatter plots of the MOS prediction re-
sults for each presentation VQA quality with (shown in the
first row) and without (shown in the second row) inorporating
the proposed method. The corresponding SRCC and PLCC
results are given in Table 1. We have three observations here.
First, the proposed model significantly outperforms its base-
line presentation VQA model. Second, a higher compactness
in the scatter plots is achieved by applying the proposed mod-
el because of the proper penalties given to the videos with
stalling. Finally, the best performance is obtained by combin-
ing the proposed method with SSIMplus [14] VQA model.

In Table 1, we have also included the re-buffering based
FTW model for comparison. Apparently, the proposed
scheme outperforms the FTW model, which does not use a
presentation quality measure and does not properly accoun-
t for the relationship between presentation quality and play-
back stallings.

5. CONCLUSIONS AND FUTURE WORK

We have presented a subjective study to understand human vi-
sual QoE of streaming video and proposed an objective model
to characterize the perceptual QoE. Our work represents one
of the first attempts to bridge the gap between the presen-
tation VQA and stalling-centric models in QoE prediction.
The subjective experiment reveals some interesting relation-
ship between the impact of stalling and the instantaneous pre-
sentation quality. The experiments also demonstrate that the
proposed model is simple in expression and effective in per-
formance.

Future research may be extended in many directions.
First, a comprehensive subject-rated database that consists of
more stalling patterns and video quality variations is desired
to better understand the behaviours of human viewers and to
examine the performance of existing objective QoE method-
s. Second, how to quantify the influence of the semantics of
stalling position, and how to incorporate it into QoE models
should be studied. Third, how to quantify the quality switch-
ing experience in adaptive video streaming needs to be ex-
ploited.
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