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ABSTRACT

Objective quality assessment plays a crucial role in the e-
valuation and optimization processes of Virtual Reality (VR)
technologies, for which state-of-the-art objective quality e-
valuation metrics for omnidirectional video, i.e., 360 degree
video, are typically derived from traditional MSE (or PSNR).
Here we propose an objective omnidirectional video quality
assessment method based on structural similarity (SSIM) in
the spherical domain. Adopting the relationship of the struc-
tural similarity between the 2-D plane and sphere, the interfer-
ence brought by the projection between the two domains can
be well handled in the assessment process. The performance
of the proposed spherical structural similarity (S-SSIM) index
is evaluated with a subjective omnidirectional video quality
assessment database. As demonstrated in the experimental
results, the proposed S-SSIM outperforms state-of-the-art ob-
jective quality assessment metrics in omnidirectional video
quality assessment.

Index Terms— omnidirectional video, structural similar-
ity, quality assessment, spherical domain, 360 degree video

1. INTRODUCTION

With the growing popularity of VR applications, omnidirec-
tional video has been attracting more and more attention. Ex-
isting video coding frameworks [1][2] and objective video
quality assessment (VQA) metrics [3] are typically designed
for 2-D plane video. It is crucial to develop VQA metric-
s specifically designed for omnidirectional video, where the
360 degree information is projected into a 2-D plane, result-
ing in mismatches between the 2-D plane and the spherical
domain. Thus, for objective VQA of 360 degree video, the
relationship between the 2-D plane and the spherical domain
needs to be taken into account.
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In [4][5][6], several objective quality assessment metric-
s, S-PSNR, WS-PSNR and CPP-PSNR, derived from PSNR
have been proposed for omnidirectional VQA [7]. Peak sig-
nal to noise ratio (PSNR) is a traditional full-reference quality
assessment metric based on averaging the squared intensity d-
ifferences of distorted and reference image pixels, but is not a
good predictor of the subjective visual fidelity. To overcome
the shortcomings of PSNR, the structural similarity index (S-
SIM) [8] considers image degradations as perceived changes
in structural information variation rather than perceived pix-
ellevel errors. Specifically, SSIM computes the luminance,
contrast and structural similarities between the distorted and
original images based on the local patterns of pixel intensities
that have been normalized, and combines these three compar-
isons to describe the overall structural similarity between the
distorted and the original images as an estimation of the qual-
ity of the distorted image. Many experiments indicate that
SSIM is more consistent with subjective quality evaluation
than PSNR [9][10]. Thus, in this paper, we attempt to explore
the relationship of structural similarity between the 2-D plane
and the spherical domain, and propose a spherical structural
similarity index (S-SSIM) for omnidirectional video quality
evaluation.

The remainder of this paper is organized as follows. In
Section 2, we introduce related work on omnidirectional
video quality assessment. The principle and the implementa-
tion of the proposed method are described in details in Section
3. In Section 4, we compare the performance of the proposed
method with other metrics using a subjective omnidirection-
al video quality assessment database and analyse the results.
Finally, we conclude the paper in Section 5.

2. RELATED WORK ON OMNIDIRECTIONAL
VIDEO QUALITY ASSESSMENT

In Spherical PSNR (S-PSNR) [4], limited number of sam-
pling points uniformly distributed on a spherical surface are
re-projected to the original and distorted images respective-
ly to find the corresponding pixels, followed by PSNR cal-
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Fig. 1. The projection from the 2-D plane to the spherical domain.

culation. There are two variants of the S-PSNR metric, the
first one, referred to as S-PSNR-NN, uses the nearest neigh-
bor rounding when re-mapped pixels in 2-D plane are at frac-
tional sample positions. The second variant, called S-PSNR-
I, uses interpolation filters instead, but has been removed in
the latest test conditions in JVET-H1030 [11], as it will in-
troduce inaccurate values and influence the reliability of the
results. In Craster Parabolic Projection PSNR (CPP-PSNR)
[6], pixels of the original and distorted images are projected
to the spherical domain and re-mapped to a Craster parabolic
projection (CPP) without spatial resolution change. PSNR is
then computed in the new domain. Pixel distribution in CPP
is close to that in the spherical domain.

Unlike S-PSNR and CPP-PSNR that need to map the pix-
els to a new domain first, Weighted Spherical PSNR (WS-
PSNR) [12] considers the change in area when uniformly dis-
tributed samples are mapped from the 2-D plane to the spher-
ical surface, as demonstrated in Fig. 1. WS-PSNR utilizes
the scaling factor of area from the 2-D plane to the sphere as
a weighting factor in PSNR computation. Specifically, for a
pixel y located at position (i, j) of an M × N image on the
2-D projection plane, the original and distorted pixel values
are denoted as y(i, j) and y

′
(i, j), respectively.WS-PSNR is

defined as follows:

WS − PSNR = 10 log(
MAX2

WMSE
) (1)

WMSE =

∑M−1
i=0

∑N−1
j=0 ((y(i, j)− y′

(i, j))2 · w(i, j)∑M−1
i=0

∑N−1
j=0 w(i, j)

(2)
where w(i, j) is the scaling factor of area from the 2-D plane
to the spherical domain. Different projection methods gener-
ate different scaling factors[13]. For instance, for an M ×N
image in the equi-rectangular projection (ERP) format, the s-
caling factor is given by:

w(i, j) = cos(
π

N
· (j + 1

2
− N

2
)) (3)

The aforementioned S-PSNR, CPP-PSNR and WS-PSNR
methods all achieves reasonably good performances for om-
nidirectional, a.k.a. 360 degree, VQA according to existing
tests, and are all recommended as the indicators of omnidi-
rectional video quality by JVET.

3. PROPOSED METHOD

As indicated in the previous section, state-of-the-art objec-
tive quality assessment metrics for omnidirectional video are
mostly based on traditional MSE (or PSNR). However, MSE
is inferior to SSIM in 2D image quality assessment [3], moti-
vating us to develop the SSIM for omnidirectional VQA and
propose S-SSIM method. First, pixels in 2-D plane are re-
projected to the sphere to compute the luminance, contrast
and structural similarities. The relationship of structural sim-
ilarity between the sphere and the projected 2-D plane are
then analysed and combined with the correlation with the dis-
tortion level in the projected 2-D plane, to handle the interfer-
ence brought by the projection. The proposed metric can be
easily adapted to various types of projections.

3.1. SSIM Components in the Spherical Domain

As the omnidirectional video is observed in the spherical do-
main, the luminance, contrast and structural similarities of
each pixel should be computed in the spherical domain. An
illustration of the S-SSIM algorithm is shown in Fig. 2 and
the specific steps are described as follows.

First, two pixels located at the same position of the origi-
nal and distorted images are mapped to the spherical domain
respectively and their corresponding latitude and longitude
coordinates on the sphere are obtained. Since the shapes of
the pixels on the middle latitude are unchanged, the angle oc-
cupied by each pixel can be determined according to the width
of the 2-D plane and the spherical dimension.

Second, we compute the structural similarity between
the region near the two pixels on the sphere. An 11 ×



Fig. 2. Illustration of Spherical Structural Similarity (S-SSIM).

11 circularly-symmetric Gaussian weighting function w ={
wi |

∑N
i=1 wi = 1, i = 1, 2, · · · , N

}
with standard devia-

tion of 1.5 samples is applied to the sphere to compute the
three similarity components [8]. The latitude and longitude
coordinates of the surrounding pixels on the spherical win-
dow are determined by the location of the center pixel and
the pixel size computed in the first step, and the values of the
surrounding pixels can be obtained by re-mapping them to
the 2-D plane to find the corresponding pixel values. If the
pixels re-mapped are at fractional sample positions, the near-
est neighbor at integer sample positions are utilized. In other
words, the 11×11 window is a symmetric window centered in
a pixel value on the sphere, and the surrounding pixel values
are obtained by considering the corresponding pixel values in
the planar domain. Thus we obtain an 11×11 image patch and
the Gaussian function are utilized to compute the mean, the
variance and the covariance of the central pixel on the sphere,
and the similarity measure of the central pixel located at (i, j)
in the spherical domain is calculated as:

S − SSIM(i, j) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4)

where x and y are utilized to distinguish pixels from the ref-
erence and distorted images, respectively. C1 and C2 are two
small constants[8]. µx and σx represent the local mean and
the local variance, respectively, and σxy represents the local
covariance between the two regions [8]. Repeat the above
steps, we obtain the similarity measure centered at each pixel
in the 2-D plane.

Considering that for each location in 2-D plane, its sim-
ilarity level on the sphere and the projected plane are not e-
qual due to existing deformations such as stretching during
the projection, the similarity measure calculated by Eq. (4) is
insufficient to fully capture the similarity level in the spherical

domain. Therefore, the relationship between the sphere and
projected plane needs to be considered. This will be discussed
in the next subsection.

3.2. Similarity Relationship on the Sphere and Projected
Plane

In this section, the derivation of the relationship is explained
based on one dimension. Let S − SSIMa denote the struc-
tural similarity measure near pixel a on the sphere. For the
image patch εx with N pixels on the sphere, the local struc-
tural similarity measure is given by:

S − SSIMεx =

∑N
a=1 S − SSIMa ·Area(εa)

Area(εx)

=

∑N
a=1 S − SSIMa ·Area(Da) · Area(εa)

Area(Da)∑N
a=1Area(Da) · Area(εa)

Area(Da)

(5)
where Area(εa) and Area(Da) are the area of a pixel in
the spherical domain and the projected plane, respectively.
Area(εx) is the area of the image patch εx on the sphere.
Let wa represent the scaling factor of the area occupied by
pixel a in the spherical domain in comparison to that in the
2D plane, then wa = Area(εa)

Area(Da)
. This allows us to account for

the fact that on the sphere, the areas of pixel at different lati-
tudes are different, while the areas of pixel on the 2-D plane
are the same. Assuming each pixel on the 2-D plane occupies
a unit area, Eq. (5) can be written as:

S − SSIMεx =

∑N
a=1 S − SSIMa ·Area(Da) · wa∑N

a=1Area(Da) · wa

=

∑N
a=1 S − SSIMa · wa∑N

a=1 wa

(6)



3.3. S-SSIM in Spherical Domain

The similarity measures in the spherical domain quantify the
perceptual similarity between the reference and distorted im-
ages based on the luminance, contrast and structure compar-
isons, the same as SSIM. For an M × N image, the final
similarity measure is defined as:

S−SSIM =

∑M−1
m=0

∑N−1
n=0 (S − SSIM(m,n) · w(m,n))∑M−1

m=0

∑N−1
n=0 w(m,n)

(7)
where w(m,n) is the scaling factor from the 2-D plane to
the sphere and is dependent on the projection methods. As a
special case, the weights in the ERP format are given in Eq.
(3).

Like SSIM, S-SSIM satisfies the following conditions[8]:
1) Symmetry: S − SSIM(x, y) = S − SSIM(y, x);
2) Boundedness: S − SSIM(x, y) ≤ 1;
3) Unique maximum: S − SSIM(x, y) = 1 if and only

if x = y.

4. EXPERIMENTAL RESULTS

We verify our algorithm on a subjective omnidirectional video
quality assessment database[14]. The aforementioned state-
of-the-art evaluation metrics for omnidirectional video are al-
so tested on the database for comparison.

4.1. Omnidirectional Video Quality Assessment Database

Eight omnidirectional video sequences from JVET of ITU-T
VCEG and ISO/IEC MPEG [15, 16, 17, 18] are selected as
references, among which six sequences last for 10s with 30
frames per second and the others are 10s with 60 frames per
second. All the sequences are mapped to 2-D plane by ERP
with a resolution of 3600x1800 and without an audio channel.
Each reference sequence is compressed by the HEVC refer-
ence software (HM version 16.14) [19] with 360-Lib [20] at 5
quantization parameter values (22, 27, 32, 37, 42) specified in
common test conditions to obtain 5 sequences of reconstruct-
ed ERP with coding distortion for each reference. There are
40 distorted sequences (8 reference sequences, 5 distorted se-
quences for each reference) in total[21].

To obtain subjective scores for each sequence, 30 subject-
s including 17 males and 13 females aged between 20 and
26 participated in the rating tests. None of them has been
involved in visual quality assessment work before, or has vi-
sion problems. Each observer is preliminarily instructed and
trained on a set of representative sequences before the for-
mal experiments. With HTC VIVE used in the test, the ob-
servers can move their heads freely to obtain thorough view-
ing of the omnidirectional video. The quality of the sequences
is assessed using the Absolute Category Rating with Hidden
Reference (ACR-HR) method [22]. The test sequences are

displayed randomly and once at a time. The observers are re-
quired to evaluate each video after viewing with a scale of 1-
5, corresponding to the quality level of Bad, Poor, Fair, Good
and Excellent, respectively. Among all the 30 subjects, 3 are
discarded as outliers and the subject rejection is conducted
based on the recommendation of ITU-BT. 500 [23]. The rest
scores are utilized to compute the MOS of each sequence.

4.2. Performance Evaluation

The prediction scores of the aforementioned metrics are cal-
culated for performance comparison. For S-SSIM and SSIM
which analyse the similarity information based on gray-scale
images, only the Y component is used. Therefore, PSNR,
WS-PSNR, S-PSNR-NN and CPP-PSNR metrics are also ap-
plied on the Y component only and implemented in the 360-
Lib Software. For planar metrics PSNR and SSIM, we per-
form the calculation of the metrics on the ERP images.

Table 1. Performance comparison of objective VQA metrics
using omnidirectional video quality database. The best per-
formance for each category is highlighted in bold font.

Metric SROCC KROCC PLCC RMSE

S-SSIM 0.8211 0.6509 0.8635 0.4428
SSIM[8] 0.7749 0.5915 0.8038 0.5223
PSNR 0.7825 0.5834 0.7741 0.5558
WS-PSNR[12] 0.7937 0.6050 0.7971 0.5301
S-PSNR-NN[4] 0.7937 0.6050 0.7963 0.5310
CPP-PSNR[6] 0.8088 0.6185 0.8002 0.5265

We compute four evaluation metrics for performance
comparison, i.e., SROCC (Spearman rank order correlation
coefficient), KROCC (Kendall rank order correlation coef-
ficient), PLCC (Pearson linear correlation coefficient) and
RMSE (root mean squared error). The first three metric-
s are utilized to describe the consistency between objective
and subjective scores, and greater values suggest more ac-
curate prediction, while the last one indicates the deviations
between objective and subjective scores, and smaller values
correspond to smaller error. The results are presented in Ta-
ble 1.

The scatter plots of the objective scores versus MOS are
shown in Fig. 3, it can be observed that, taking the rela-
tionship of structural similarity between the 2-D plane and
the spherical domain into consideration, the proposed method
achieves better performance compared with the convention-
al SSIM. In other words, S-SSIM conforms to the funda-
mental properties of SSIM but is more suitable for omnidi-
rectional video quality assessment. Moreover, S-SSIM also
outperforms state-of-the-art PSNR-based algorithms special-
ly designed for omnidirectional video. It is worth noting that



Fig. 3. Scatter plots of objective evaluation scores and MOS. The red line is the curve fitted with logistic function.

WS-PSNR also utilizes the scaling factor to describe the re-
lationship between the distortion level in the 2-D plane and
the spherical domain. Therefore, the better performance of
S-SSIM compared to WS-PSNR may result from the intrinsic
superiority of SSIM over PSNR.

5. CONCLUSION

We analyse the relationship of structural similarity between
the 2-D plane and the 360 degree spherical domain, and
propose an SSIM-based VQA algorithm for omnidirectional
video. The proposed metric is verified on a subjective omni-
directional video quality assessment database and compared
with state-of-the-art objective quality evaluation metrics. Ex-
perimental results indicate that the proposed metric achieves
superior performance. The general framework of the pro-
posed spherical SSIM method does not limit its usage on ER-
P projection method only, and can be easily generalized for
quality evaluation of omnidirectional videos created by other
projection methods.
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