~An Adaptive Filtering Interpolator Using Neural Networks

Zhou WANG and Yinglin YU
Research Institute of Electronics and Automation
South China University of Technology
Guangzhou 510641, P.R. China

ABSTRACT

Filtering interpolators presented by Lucke and Stocker[1] have
advantages in reducing interpolation error in image
background clutter-suppression systems especially for data
with low sampling rates. Before they are to be applied, a fixed
parameter d should be predetermined. We think if the
parameter @ is well adjusted, it may also be useful to recover
an image from a less densely sampled image. Experiments
show that interpolation error relies greatly on the parameter 4
and the best values of @ for certain images are much
different. Therefore, how to determine the values of @
becomes the key problem for this application.

In this paper, we develop a neural network based adaptive
system to automatically adjust the value of 4. A modified
robust BP algorithm is used in the training procedure for our
special use. Simulation results show that @ can be generated
automatically by the neural networks instead of being blindly
predetermined to a fixed value. Compared to the interpolator
with best fixed parameter @, interpolation results are also
improved.

1. INTRODUCTION

Filtering interpolators proposed by Lucke and Stocker [1] are
originally used in image background clutter-suppression
systems where a second image is subtracted from a first in a
frame differencing signal processor (FDSP), in order to
suppress the fixed background on a pixel-by-pixel basis. Since
one frame must almost always be resampled before it is
compared to another, interpolation etror contributes to clutter
leakage in the difference frame. Lucke and Stocker [1] show
that filtering interpolators are powerful in reducing clutter
leakage especially for data with low sampling rates. When a
filtering interpolator (polynomial or trigonometric) is to be
used, a fixed parameter @ should be predetermined which can
be chosen by users in their special uses.

Although the original use of filtering interpolator is for
clutter-suppression processing, we think it may also be useful
to recover an image from a less densely sampled image. This

recovering procedure can be employed by an image

0-7803-2559-1/95 $4.00 © 1995 IEEE

1671

compression/decompression system where the less densely
sampled image can be viewed as the compressed codes and by
applying the interpolator, we can obtain an interpolated image
(decompressed image) from the less densely sampled image.
Experiments show that the interpolation error is more sensitive
to the parameter d in this process. Therefore, how to
determine @ becomes the key problem for this application.

To get better interpolation results, we are thinking of
developing a system to adaptively adjust @ for the local
filtering interpolator where the inputs of the system are the
value of the local sampling points and the output is &. This
can be illustrated as a nonlinear function approximation
problem. Multilayer feedforward neural networks have been
proposed as a tool for nonlinear function approximation
[2,3,4] and back propagation (BP) algorithm is a widely used
learning algorithm for training multilayer networks. The
training data for the networks are rather fizzy. We describe it
as fuzzy for two reasons. The first is that the desired outputs
can be very different values even if the inputs are similar. The
second is that their related interpolation mean square errors

.(MSE) change a lot in different cases. Standard BP algorithm

is sensitive to these complex training data. Chen and Jain [5]
proposed a way to reduce the influence of bad training data. In
our special use, this algorithm can be improved by considering
another parameter k, which is an approximate error sensitive
measure for the training data.

In section 2, we will briefly describe the filtering interpolators.
In section 3, a modified robust BP neural network is
discussed. We introduce our adaptive system in section 4.
Some simulation results are given in section 5 and concluding
remarks are made in section 6.

2. FILTERING INTERPOLATION

A local one dimension interpolator can be described as the
formula:

N2

> x,h(n-s)

n=—-(N/2-1)

Y, = M

where x, denotes the values of samples, h(x) is the
interpolation function and y_ is the estimated value of the
point at the position . For images with two dimensions, the
interpolator is applied to each dimensions separately. For a
standard interpolator, A(n) = 8(n). When s=0, they simply
reproduce the data to which they are applied. For s# 0, there
will be some error when y, is compared to x,. Filtering
interpolators are different from standard interpolators which
use spectral filter to fit the sampling data and the condition
h(n) = 3(n)need not necessarily be satisfied. Lucke and
Stocker [1] developed parameteried families of filtering
interpolators, one of them is the DFT-4 interpolator, whose
interpolation function is

h(x) = i[l +2(1-2a)cos(nx/2) +(1-4a)cos(nx)] (2

the parameter d can be chosen by users.

Filtering interpolators have shown its power in reducing
interpolation error for frame differencing signal processor
(FDSP) where they are applied to both two data sets, one
shifted and the other non-shifted. In this case, the evaluation
standard for interpolation results is the error when the two
interpolated data sets are compared.

We think if the parameter @ is well adjusted, the filtering
interpolators may also be used to recover an image from a less
densely sampled image. In this case, the interpolator only
applied on one data set and the evaluation standard for
interpolation results is the error when the interpolated data
compare to the original data. Experiments show that the
interpolation results are very sensitive to the value of & in this
application. The best fixed values of d change largely with
data spectrum. We realize that if Q@ can be adaptively
adjusted, better interpolation results may be obtained.

3. THE NEURAL NETWORKS

As discussed in section 1, we can use multilayer feedforward
neural networks to automatically adjust the parameter @ for
filtering interpolators. To get a set of training data, a 4
dimension vector X is randomly extracted from digital
training images. The 4 components of the vector are
consequently equally spaced 4 samples and their positions on
the axis are fixed to be -1, 0, 1 and 2 respectively. The desired
interpolation output is a vector Y, whose components are the
values of the points between O and 1 while the real
interpolation output vector Y is generated by the filtering
interpolator. We apply a 4 points discrete cosine
transformation (DCT) to the input samples and discard the

1672

direct component which we think have nothing to do with the
adequate value of @, and then we get a 3 dimension vector X,
which will be the input of the neural networks. This process
can be illustrated as a feature extraction procedure. We also
need a desired output of @ (@). Given an input vector X and
a parameter d, the filtering interpolator can generate an
output vector Y. @, is which makes the mean square error
(MSE) between Y and Y, the least. We can get @, by using a
discrete form of Newton's method [6]. An example of MSE-Q
curve is shown in Fig.1. Experiments show that almost all
MSE-Q curves are much like 2-order polynomial curves but
their curvatures are different. The curves with larger
curvatures means their MSEs are more sensitive to d while
those with smaller curvatures are less sensitive to 4. To
approximately measure the sensitivity, another parameter k is
computed which is the difference between MSE correspond to
a, (MSE, , the least value of MSE) and MSE correspond to
a +Aa (MSE), where Ad is a constant (see Fig. 1).

& vise
40-

Ms%g [N

MSEd - - ——— - - -2

Fig.l Anexample of MSE-a curve

A set of training data (X, , @, , k) is employed by the BP
algorithm to adjust the weights of the neural networks. The
networks are composed of several independent subnetworks.
A classification algorithm according to the magnitudes of X is
used to determine which subnetwork will be trained. We use
several subnetworks instead of one just to lessen the
complexity of training data. By evaluating the quality of the
training data, a robust learning algorithm was developed by
Chken and Jain [5]. We think the evaluation can be more
accurate by considering k& and we develop a modified robust
BP algorithm for our special use. To illustrate our algorithm
briefly, we only discuss the difference between our algorithm
and standard BP algorithm. In standard BP algorithm, the
error on the output node which will be back propagated is -

3

8" = (af —a})

where a5 and af are desired output and network output of
the parameter @ respectively, we modify (3)to:

8% = g(1/ k)Y, (af —a?) @
The function g(x) (see Fig. 2) is defined as follows:
g(x)=exp(-x*/c%))

where C is a constant. The function P, (r) (see Fig. 3) is the
same as that in [5] :

r | <a(®)

_ | tanh(c, (B(8) - [7))sign(r)
#ir)= an<r<bey O

0 I > b(2)

where a(t) and b(¢) are time dependent cutoff points while -

C, and C, are constants. In standard BP algorithm, all training
data are equally learned, while in our approach, to what extent
a set of training data will be learned is determined by its
quality. The set of training data with larger k£ (more important)
and smailer (a) -a”) (good training data) will be learned
more, otherwise it will be learned less.

After training, the weights of the networks are stored and the
neural networks can recommend us a value of & for any an
input vector X,.

o)
i

Fig. 2 The function of g(x)

) Y, (r)

@ B

Fig. 3 The function of \¥,(r)

, filtering Y,
T . |interpolation /l
| NN)
| I.ﬁ!
:‘ | MSE
\ (
X | J
2| Jfoer} Xt :
3) Newton's
| method
classifi- |'- - -F--- -1 1.
cation ' o ..
‘ - | modified |k sensitivity
robust BP measure

Fig. 4 The adaptive system (When training, switches 1,3,and 4 are closed and switch 2 is turned to the right side.)

4. THE ADAPTIVE SYSTEM
Our adaptive system is shown in Fig. 4.

When training, the switches 1,3 and 4 are closed and switch 2
is turned to the right side. In each training step, an input vector
X and a desired system output vector Y, which are randomly
extracted from the training images are inputted to the system.
X, is generated by the DCT transform and the neural networks
give an output 4 . Through Newton's method, we get @, and
then obtain sensitivity measure £. The difference between a,
and @, (&, =a, a,) and k are employed by the modified BP
algorithm to modify the weights of one of the subnetworks.
By iteratively apply the training step millions of times. The
average €, decreases gradually.

When testing, the switches are turned to the other side (as
shown in Fig. 4). A gray level digital image is less densely
equal space resampled. Our adaptive interpolation system is
applied to the sample data repeatedly horizontally and then
vertically to generate an interpolated image. For each time, 4
consequent sample points are inputted to the system as the
input vector X. X is computed and one of the subnetworks is
activated by the classification algorithm to recommend us an
a,. a, together with X are used by the filtering interpolator

and the output is vector Y which is the interpolation data for
the points between the 2nd and 3rd samples of X.

5. SIMULATIONS

The training and testing images we used are 512X 512, 8bpp
gray level images, some of which are shown in Fig. 5. To train
our adaptive system, several of them are employed as training
images. When training, we resample the testing images every
8 pixels in both horizontal and vertical directions and use
DFT-4 interpolator with different fixed parameter a and our
adaptive interpolator to generate interpolated images. To
evaluate interpolation results, we use peak signal-to-noise
ratio (PSNR) as the distortion measure.

7
2552 M
PSNR =10log;,—

"IEE(Z:‘ —Zi,)z

Where z, and z, are the ith pixels from the original image and
the interpolated image respectively, and K is the number of
pixels in one image.

The best values for fixed parameter a are listed in Table 1 and
PSNR-a curve for "LENA" with sampling rate every 8 pixels

is shown in Fig. 6. It is clear that the best a for different
images are different and PSNR will decline when a deviate
the best a. Therefore, it is difficult to blindly predetermine a
fixed value of a for a certain image.

Table 2 shows the interpolation results for testing image
"LENA" with different training images. Compare to Table 1,
we find that the interpolation results of our system are slightly
better than those with best fixed a. PSNR does not change a
lot with different training images, so we can conclude that the

generalization ability of our system is good. We think this is

due to the large amount of the training data and the
classification algorithm in the adaptive system.

Fig. 5 Some of the training and testing images. (up-left:
"LENA", up-right:"MB", down-left:"WH", down-right:"HS")

PSNR(db)
24.0+
23.5+
23.01 !] \ a
0 0.1 0.2

Fig. 6 An example of PSNR-a curve
(image: "LENA", sampling rate: every 8 pixels)

Table 1 Best fixed Q and related PSNR

image sampling rate best a PSNR(db)

LENA every 8 pixels 0.069 24.01
MB every 8 pixels 0.059 25.69
WH every 8 pixels 0.147 23.94
HS every 8 pixels 0.100 26.08

Table 2 Adaptive interpolation results
(testing image: "LENA", sampling rate: every 8 pixels)

training image(s) PSNR(db)
LENA 24.08
LENA, MB, WH, HS 24.07
MB, WH, HS 24.06
10 images (not including LENA) 24.07

6. CONCLUSIONS

We develop an adaptive filtering interpolation system to
recover an image from a less densely sampled image. In our
system, the parameter & for filtering interpolation can be
automatically generated by the neural networks instead of
blindly predetermined to a fixed value. The interpolation
results are slightly better than those with the best fixed values
of A . The generalization ability is to some extent good. These
advantages make our system more practical in real
applications.

To train the feedforward neural networks employed by our
adaptive system, standard BP algorithm is not adequate
because of the complexity of the training data. A robust BP
algorithm[5} can make good training data being learned more
while bad training data being learned less. By considering
another parameter k, we develop a modified robust BP
algorithm. This modification makes more important training
data (with larger k) being learned more and less important
training data (with smaller k) being learned less.

Our system may be improved in several respects:

The DCT transformation applied on the input vector X is
somewhat a feature extraction procedure. Further research
about the features of sampling data and interpolation
performances may give us better ways to extract features and
classify the network input data.

We find it is difficult to determine ¢ in (5), a(?), b(?), ¢, and
¢, in (6) and k in Fig.1 is also an approximate estimation.

1675

Improvements in obtaining these parameters may improve the
efficiency of the network learning algorithm.

Other kinds of neural networks may replace the BP networks
in our system.

Filtering interpolator may be more useful when dealing with
smoother images while our training and testing images have
too many detail regions which are difficult for any
interpolation algorithm. Therefore, more smoother images
should be involved in the training and testing procedure.

All our training and testing data are extracted from gray level
images. How our system performs when dealing with other
kinds of signals and how about the generalization ability
between different kinds of signals could be studied.

ACKNOWLEDGMENT

This work is supported partly by China National Natural
Science Foundation and partly by China National "Climbing"
project.

REFERENCES

[1] R. L. Lucke, A. D. Stocker, Filtering interpolators for
frame differencing signal processors, IEEE Trans. on Signal
Processing, vol. 41, no. 8, 1993.

[21 K. Hornik, M. Stinchcombe, H. White, Multilayer
feedforward networks are universal approximators, Neural
Networks, vol. 2, 1989.

[3] C. Ji, R. R. Snapp, D. Psaltis, Generalizing smoothness
constraints from discrete samples, Neural Computation, vol. 2,
1990.

‘[4] T. Poggio, F. Girosi, Networks for approximation and

learning, Proc. IEEE, vol. 78, no. 9, 1990.

[5]D. S. Chen, R. C. Jain, A robust back propagation learning
algorithm for function approximation, IEEE Trans. on Neural
Networks, vol. 5, no. 3, 1994.

[6] B. Widrow, S. D. Stearns, Adaptive signal processing,
Prentic-Hall, Inc., 1985.

