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Motion is one of the most important types of information contained in natu-

ral video, but direct use of motion information in the design of video quality

assessment algorithms has not been deeply investigated. Here we propose to in-

corporate a recent model of human visual speed perception [Stocker & Simon-

celli, Nature Neuroscience 9, 578-585 (2006)] and model visual perception in

an information communication framework. This allows us to estimate both the

motion information content and the perceptual uncertainty in video signals.

Improved video quality assessment algorithms are obtained by incorporating

the model as spatiotemporal weighting factors, where the weight increases

with the information content and decreases with the perceptual uncertainty.

Consistent improvement over existing video quality assessment algorithms is

observed in our validation with the video quality experts group Phase I test

data set.
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1. Introduction

The capability of representing motion is probably the most critical characteristic that dis-

tinguishes a natural video sequence from a stack of independent still image frames. If we

believe that the central goal of vision is to extract useful information from the visual scene,

then the perception of motion information would play an important role in the perception

of natural video. Since the main purpose of objective video quality assessment (VQA) is

to predict human behavior in the evaluation of video quality, it would be essential for a

successful VQA system to effectively take into account motion information.
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Nevertheless, in the literature of VQA, motion information has typically been employed

indirectly. The most frequently used method is temporal filtering [1, 2], where linear filters

or filter banks are applied along the temporal direction (or along the spatial and temporal

directions simultaneously), and the filtered signals are normalized to reflect the effect of

the temporal contrast sensitivity function [3] (the variation of human visual sensitivity as

a function of temporal frequency). Advanced models may also include the temporal mask-

ing effects (the reduction of visibility of one image component due to the existence of its

neighboring components) [2] or statistics of the temporal filter coefficients [4]. Since motion

in the visual scene may cause variations in signal intensity along the temporal direction,

temporal filtering can, to some extent, capture motion. However, representing motion using

temporal filtering responses is indirect, inaccurate, and in some sense problematic. First,

motion may not be the sole reason for temporal signal intensity variations. The change of

lighting conditions is an obvious counterexample. Therefore, the temporal filter coefficients

are indeed a mixture effect of motion together with many other reasons. Second, the speed of

motion cannot be directly related to the strength of temporal filter responses. For example,

two objects with the same speed of motion but different texture and contrast would result in

different speeds of temporal intensity variation, and thus different temporal filter responses.

Third, many visual experiments that measure temporal visual sensitivities were done with

flickering patterns [1], which do not reflect any physical motion of the objects. Moreover,

since the motion and speed information are not represented explicitly, a lot of knowledge

about motion perception cannot be directly used within such a temporal filtering framework.

Only a relatively small number of existing VQA algorithms detect motion explicitly and

use motion information directly. Wang et al. proposed a heuristic weighting model [5], which

was combined with the structural similarity (SSIM) [6] based quality assessment method

to take into account the fact that the accuracy of visual perception is significantly reduced

when the speed of motion is extremely large. A set of heuristic fuzzy rules was proposed by

Lu et al. [7] that use both absolute and relative motion information to account for visual

attention and motion suppression. It was shown that these rules are effective in improving

VQA performance of the standard mean squared error (MSE)/peak signal-to-noise ratio

(PSNR) measures as well as the SSIM [6] approach. In two recent papers by Seshadrinathan

and Bovik, local motion information obtained from optical flow computation is employed to

adaptively guide the orientation of a set of three-dimensional Gabor filters [8,9]. The adapted

Gabor filter responses are then incorporated into the SSIM [6,10] and the visual information

fidelity (VIF) [11] measures for the purpose of VQA.

In this paper, we propose what we believe to be a new method that directly incorporates

motion information by modeling the visual perception process in an information communi-

cation framework. Our approach is largely inspired by the recent psychophysical study by
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Stocker and Simoncelli on human visual speed perception [12]. Based on a Bayesian optimal

observer hypothesis, Stocker and Simoncelli measured the prior probability distribution and

the likelihood function of speed perception simultaneously from a set of carefully designed

psychovisual experiments. These measurements are consistent across human subjects and

can be modeled using simple parametric functions. These results are substantially different

from previous statistical models of visual speed perception [13–15], where the prior distribu-

tions are assumed rather than measured. Our approach has greatly benefited from these

results, because the statistical models derived from them provide the essential ingredients

in the computation of both the motion information content and the perceptual uncertainty

(details will be given in Section 2). Our method is based on the following assumptions and

observations.

First, we believe that the human visual system (HVS) is an efficient encoder or information

extractor (subject to certain physical constraints such as power consumption), as widely

hypothesized in computational vision science [16]. To achieve such efficiency, it is natural to

assume that the areas in the visual scene that contain more information should be more likely

to attract visual attention and fixations [17,18]. Such information content can be quantified

using statistical information theory, provided that a statistical model about the information

source is available. In fact, the information content-based method has already shown to be

useful in still image quality assessment (IQA) [19].

Second, as in a number of previous papers [4, 11, 19], we model visual perception as an

information communication process, where the information source (the video signal) passes

through an error-prone communication channel (the HVS). The key difference from the pre-

vious IQA/VQA models is that the noise level in the communication channel is not fixed

here. This is motivated by the empirical observation that the HVS does not perceive all

the information content with the same degree of certainty. For example, when the back-

ground motion in a video sequence is very large (or the head/camera motion is very large),

the HVS cannot identify the objects presented in the video with the same accuracy as in

static background images, i.e., the video signal is perceived with higher uncertainty. Again,

such perceptual uncertainty can be quantified based on information theory, by relating the

stochastic channel distortion model with the speed of motion. In particular, the psychophys-

ical study by Stocker and Simoncelli [12] suggests that the internal noise of human visual

speed perception increases with the true stimulus speed and decreases with the stimulus

contrast.

In Section 2, we describe our method to compute locally (in both space and time) the infor-

mation content and the perceptual uncertainty based on the motion information estimated

from the video sequence. We then combine them to generate a three-dimensional perceptual

weight function. The function can be incorporated as weighting factors into any local VQA
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algorithm that produces a quality/distortion map over space and time. More detailed im-

plementation is presented in Section 3. In Section 4, we validate our model by combining it

with MSE/PSNR and SSIM [6] based quality assessment methods. Consistent improvement

is achieved with the video quality experts group (VQEG) Phase I test database [21].

2. Method

The motion information in a video sequence can be represented as a three-dimensional field

of motion vectors, where each spatial location (x, y) and time instance t is associated with a

motion vector ~v(x, y, t) = [vx(x, y, t) vy(x, y, t)]T . For notational convenience, in the rest of

the paper, we often drop the space and time indices and write a motion vector as ~v. For a

given video sequence, we consider three types of motion fields − absolute motion, background

motion, and relative motion. An illustration is given in Fig. 1, where the absolute motion ~va

is estimated as the absolute pixel movement at each spatial location between two adjacent

video frames. By contrast, the background motion ~vg is approximately global, which is often

caused by the movement of the image acquisition system. We also define a relative motion ~vr

at each spatial location as the vector difference between the absolute and the global motion,

i.e.,

~vr = ~va − ~vg . (1)

The speed of motion can be computed as the length of the motion vector, which, for conve-

nience, we denote as v = ‖~v‖2. Thus, vg, va and vr represent the speed of the background

motion, the absolute motion, and the relative motion, respectively.

A recent approach in understanding human visual speed perception is to use a Bayesian

optimal observer model, in which the visual system judges the speed of motion by “opti-

mally” combining some prior knowledge of the visual world together with the current noisy

measurements [12–14]. It has been shown that this approach can successfully explain a num-

ber of psychovisual phenomena where the visual system tends to give biased judgments

on the speed of retinal motion [12–14]. Figure 2 describes this approach in an information

communication framework, where the stimulus speed information v passes through a noisy

front-HVS channel. This results in the internal noisy measurement m, which is associated

with a statistical noise model, or a likelihood function. The visual system gives an estimate

of the stimulus speed v̂ not only from m, but also based on some prior information about

the probability distribution of the stimulus speed. It is assumed that the prior distribution

has been established beforehand in the brain by sufficient statistics about the natural vi-

sual environment. Figure 2 also shows the prior distribution and the noise likelihood function

measured by Stocker and Simoncelli [12]. In this section, we will describe how these measure-

ments help us develop models to compute both the information content and the perceptual

uncertainty of speed perception and how to combine them for VQA.
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Fig. 1. Illustration of absolute motion, background motion and relative motion

estimated from two consecutive frames of a video sequence.
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Fig. 2. Bayesian visual speed perception in an information communication

framework. v: stimulus speed; m: noisy measurement; v̂: estimated speed; c:

stimulus contrast. Adapted from [Stocker & Simoncelli ’06] [12].
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2.A. Information Content

It is believed that object motion is associated with visual attention and can be used for

predicting visual fixations [20]. This is intuitively sensible because statistically, most of the

objects in the visual world are static (or close to static) relative to the background. As a

result, an object with significant motion with respect to the background would be a strong

surprisal to the visual system. If the HVS is an efficient information extractor, as discussed

in Section 1, then it should pay more attention to such a surprising event. This intuitive

idea may be converted into a quantitative measure of motion information content (or how

surprising the event is), provided that the prior probability distribution about the speed of

motion is known. Early work on Bayesian speed perception has assumed Gaussian distribu-

tion for the speed prior [13], but the recent result by Stocker and Simoncelli [12] suggests

that the distribution has a much longer tail than Gaussian, as shown in Fig. 2. Indeed, it

can be well fitted with a straight line in the log-log domain (see Fig. 2). This leads us to

assume a power-law function for the prior distribution of relative motion:

p(vr) =
τ

vα
r

, (2)

where τ and α are two positive constants. Since the power-law function does not sum to a

finite number, this is not a strictly valid probability density function and can only be used

when vr is away from 0. For any observed motion vr, we can then estimate the information

content associated with it by computing its self-information or surprisal as

I = − log p(vr) = α log vr + β, (3)

where β = − log τ is a constant. Eq. (3) suggests that the motion information content

increases with the speed of relative motion, which is consistent with our intuition discussed

earlier.

2.B. Perception Uncertainty

If we model visual perception as an information communication process, then the amount of

information that can be received (perceived) at the receiver end will largely depend on the

noise in the distortion channel (the HVS). In other words, the internal noise in the HVS,

or the likelihood function of the noisy measurement, determines the perceptual uncertainty.

It was found that for a given stimulus speed, a log-normal distribution can provide a good

description of the likelihood function [12]:

p(m|vs) =
1√

2πσm
exp

[−(log m− log vs)
2

2σ2

]
, (4)

where vs and m are the speed of the true stimulus motion and the measurement, respectively.

Furthermore, the experimental results by Stocker and Simoncelli [12] suggest that in the
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logarithmic speed domain, the width parameter σ in the log-normal distribution is roughly

constant for any stimulus speed vs and inversely dependent on the stimulus contrast c, as

illustrated in Fig. 2. Note that the width here is represented in the log-domain, and thus it

indeed scales linearly with vs in the linear speed domain. Mathematically, we model it as

σ =
λ

cγ
, (5)

where λ and γ are both positive constants.

For a given video sequence, we assume that the underlying stimulus speed vs is the speed

of the background motion vg. This assumption is naturally connected to our intuitive idea

described in Section 1 that when the background motion in a video sequence is very large

(most likely caused by large head/camera motion), the HVS cannot identify the objects

presented in the video with the same accuracy as in static background. A natural way to

quantify the level of the internal noise, or the perceptual uncertainty, is the entropy of the

likelihood function, which can be computed as

U = −
∫ ∞

−∞
p(m|vg) log p(m|vg)dm

=
1

2
+

1

2
log(2πσ2) + log vg

= log vg − γ log c + δ , (6)

where δ = 1
2
+ 1

2
log(2π)+log λ is a constant. Again, this perceptual uncertainty measurement

is consistent with our intuition. On the one hand, it increases with the background motion of

the video frame, suggesting that when the background motion is very large, the HVS cannot

extract the structural information about the objects presented in the video with the same

accuracy as in static images. On the other hand, it decreases with the stimulus contrast,

implying that higher contrast objects are perceived with lower uncertainty.

2.C. Video Quality Assessment Based on Motion Perception

We compute the motion information content and the perceptual uncertainty at every spa-

tial location and time instance (x, y, t) in the video sequence. Based on the efficient coding

hypothesis about the HVS, the importance of a visual event should increase with the in-

formation content, and decrease with the perceptual uncertainty. Therefore, we define the

following spatiotemporal importance weight function at every (x, y, t)

w = I − U = (α log vr + β)− (log vg − γ log c + δ) . (7)

The calculation of the information content, the perceptual uncertainty and the importance

weighting function is demonstrated in Fig. 3, where two consecutive video frames are ex-

tracted from the “Mobile Calendar” sequence, and the motion field as well as the maps for
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Fig. 3. (a),(b) Two consecutive frames extracted from the “Mobile Calendar”

sequence; (c) Estimated absolute motion field; (d) Estimated relative motion

field; (e) Estimated local information content map; (f) Estimated local per-

ceptual uncertainty map; (g) Estimated local weighting factor map.
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I, U and w are computed (more details of the computation are given in Section 3). It is

observed from the video sequence that the toy train moves from the right to the left with

respect to the moving background. Note that although the absolute motion of the train is al-

most static, its relative motion is significant. Thus, based on our model, the region associated

with the train is given larger weights relative to the background.

The importance weight function alone cannot serve as a VQA algorithm. However, it can

be incorporated into a local image quality/distortion measure as a weighting function. The

local image quality/distortion measure must provide a three-dimensional quality/distortion

map of the video sequence being evaluated. Let q(x, y, t) be the quality/distortion map given

by the local quality/distortion metric, the final VQA score is computed as

Q =

∑
t

∑
x

∑
y w(x, y, t) q(x, y, t)

∑
t

∑
x

∑
y w(x, y, t)

. (8)

3. Implementation Issues

To build a real VQA system based on the proposed approach, several implementation issues

need to be resolved. First, we need to estimate the motion vector field. Rather than using

block matching-based motion estimation as in previous work [5], here we choose to use a

optical flow method for motion estimation, which avoids the computationally intensive block

search procedures and provides a smoother motion vector field. In particular, we compute

the absolute motion field using Black and Anandan’s multi-layer optical flow estimation

algorithm [22] with a five-level pyramid decomposition. The background motion is obtained

by a maximum likelihood estimation to identify the peak of the histogram generated by

histogramming motion vectors on the two-dimensional grid [23]. The relative motion vector

~vr is then computed using Eq. (1).

Second, the local contrast needs to be computed at each spatial location and time instance.

Although contrast is an extensively used term throughout the field of visual psychophysics

and physiology, mathematical definition of local contrast for complex natural images is a

nontrivial issue [24]. Here we compute the local contrast as the ratio between the local

standard deviation normalized by the local mean, i.e., for a given local image patch p (8× 8

blocks in our implementation), we define

c′ =
σp

µp + µ0

, (9)

where σp and µp are the standard deviation and the mean computed within the local patch,

respectively, and µ0 is a small constant to avoid instability near 0. This definition of contrast

guarantees that linearly scaling all the pixel intensities around the mean leads to a linear

scaling in the contrast calculation. Compared to the choice of using the difference between

the maximal and minimal pixel intensities, this contrast definition also avoids the instability

10



that one extreme pixel (e.g., a positive or negative impulse) could drastically change the

contrast evaluation of an image patch. In addition, as in previous models [25, 26], to take

into account the contrast response saturation effect at small and large contrast values, we

pass the contrast computation through a pointwise nonlinear function given by

c = 1− e−(c′/θ)ρ

, (10)

where ρ and θ are two constants that control the slope and the position of the function,

respectively.

The third practical issue in the implementation of the algorithm is that the background

motion vg, the relative motion vr, and the local contrast c may be close to zero. This could re-

sult in unstable evaluation of the weight function. To avoid this, and to take into account the

Weber-Fechner law, we take a similar approach as in the Stocker and Simoncelli paper [12].

That is, instead of computing log vr, log vb, and log c, we replace them with log(1 + vr/v0),

log(1 + vb/v0), and log(1 + c/c0), respectively, where v0 and c0 are both small positive con-

stants. Furthermore, to avoid the situation that the weight might go negative, we threshold

it at 0. Therefore, the final importance weight function we are computing is given by

w = max
{
0,

[
α log

(
1 +

vr

v0

)
+ β

]
−

[
log

(
1 +

vg

v0

)
− γ log

(
1 +

c

c0

)
+ δ

]}
. (11)

Since the motion vectors are in the unit of pixels/frame, the parameter v0 also needs to be

in the same unit. In our implementation, we assume a 32 pixels/degree of viewing distance,

and as in the Stocker and Simoncelli paper, we fix v0 = 0.3 degree/sec. We can then convert

v0 based on the frame rate of the video sequence. For example, if the frame rate is 30

frames/sec, then v0 = 0.3 × 32/30 = 0.32 pixels/frame. If the frame rate is 25 frames/sec,

then v0 = 0.3 × 32/25 = 0.384 pixels/frame. The other parameters are handpicked and we

find that the following parameters give reasonable results and use them in all the experiments

reported later in this paper: α = 0.2, β = 0.09, γ = 2.5, δ = 2.25, µ0 = 6, θ = 0.05, ρ = 2,

and c0 = 0.07. In our experiments, we found that generally the overall performance of the

algorithm is not very sensitive to small variations on these parameters. However, how to

choose these parameters in a systematic way and how to quantify their sensitivities are still

under investigation.

4. Validation

To validate the proposed model with real VQA algorithms, we incorporate the proposed

weighting method with two types of image distortion/quality maps. The first is the squared

error map defined by

q(x, y, t) = |Ir(x, y, t)− Id(x, y, t)|2 , (12)
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where Ir(x, y, t) and Id(x, y, t) are the pixel intensity values at spatial location (x, y) and

time t in the original video sequence (as a perfect-quality reference) and the distorted video

sequence (quality to be evaluated), respectively. The standard MSE measure is a simple

average of such a distortion map over space and time. The standard PSNR measure (which

is widely used in the image processing literature) is defined as

PSNR = 10 log10

(
L2

MSE

)
, (13)

where L is a constant, representing the dynamic range of image pixel intensities (e.g., for 8

bits/pixel gray-scale image, L = 28− 1 = 255). Notice that the PSNR values do not provide

any new information other than a nonlinear monotonic scaling of the MSE values. With the

proposed weighting approach being taken into account, a weighted MSE measure can be

computed using Eq. (8). This can then be further converted to a weighted PSNR measure

using the same approach as Eq. (13).

The second type of image quality map is created using the SSIM approach [5,6]. The local

SSIM value is computed using two image patches extracted from the same spatial location

from the reference and the distorted images, respectively. The SSIM value is defined as [6]

q(x, y, t) =
(2µrµd + C1)(2σrd + C2)

(µ2
r + µ2

d + C1)(σ2
r + σ2

d + C2)
, (14)

where µr, µd and σr, σd are the mean and standard deviation values of the reference and the

distorted image patches, respectively. σrd is the cross correlation between the mean-removed

image patches, and C1 and C2 are two constants. More detailed explanations and discussions

about SSIM can be found in the referred papers [5, 6]. Again, the standard SSIM measure

is a simple average of the SSIM map over all space and time, and a weighted SSIM measure

can be computed by incorporating Eq. (14) into Eq. (8).

Different image distortion/quality maps can provide a substantially different prediction of

local image quality. An example is shown in Fig. 4, where an original image is compressed with

JPEG, and the absolute difference map (which is the basis for MSE/PSNR measure) and the

SSIM map are computed. Both maps use brighter pixels to indicate better quality. Careful

inspection of the distorted image together with the quality maps suggests that absolute

error is not a good indicator of local image quality when compared with the SSIM index.

For example, only the SSIM map clearly points out the blocking artifacts in the sky.

The proposed method is tested using the VQEG Phase I database [21], which, to the

best of our knowledge, is the only publicly available database that contains a relatively

large number of subject-rated video sequences. The database contains 20 standard definition

television reference video sequences, which can be further divided into two sets of video

sequences that are 50Hz (25 frames/s) and 60Hz (30 frames/s), respectively. Each reference
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(a)
 (b)


(c)
 (d)


Fig. 4. Illustration of quality maps. (a) Original image; (b) distorted image

(by JPEG compression); (c) absolute error map − brighter indicates better

quality (smaller absolute difference); (d) SSIM index map − brighter indicates

better quality (larger SSIM value). The SSIM index appears to be a better

indicator of local image quality.
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Table 1. ROCC Results of VQA Algorithms on VQEG Phase I Database.

PSNR(sw): PSNR with spatial information content-based weighting [19].

PSNR(w): PSNR with proposed weighting; SSIM(sw): SSIM with spatial infor-

mation content-based weighting [19]. SSIM(w): SSIM with proposed weighting.

Data set MSE/PSNR PSNR(sw) [19] PSNR(w) SSIM SSIM(sw) [19] SSIM(w)

50hz 0.8152 0.8211 0.8278 0.8301 0.8544 0.8948

60hz 0.7112 0.7120 0.7303 0.7680 0.7692 0.7985

All 0.7818 0.7887 0.8048 0.8127 0.8287 0.8621

video sequence has 16 distorted versions with a variety of distortion types [21]. This results

in a total of 320 distorted video sequences. The subject score for each sequence is given

by the mean opinion score (MOS) from the ratings given by multiple human subjects. The

difference of MOS (DMOS) score is then calculated for each distorted video sequence by

subtracting its MOS by the MOS of its corresponding reference video sequence.

We use the Spearman rank order correlation coefficient (ROCC) between the subjective

and objective scores to evaluate the performance of the VQA algorithms:

r = 1− 6
∑N

i=1 d2
i

K(K2 − 1)
, (15)

where K is the number of video sequences in the data set, and di is the difference between

the i-th video sequence’s ranks in subjective and objective evaluations. ROCC is one of the

metrics adopted by VQEG for the evaluation of video quality measures [21]. Its advantage

is in its robustness because it is independent of any fitting function that attempts to find

a nonlinear mapping between the objective and the subjective scores. Table 1 shows the

ROCC test results of three data sets − the 50 Hz data set, the 60 Hz data set, and all

data combined. The results suggest that the proposed weighting method is quite effective.

It gives clear and consistent improvement to all test data sets with two completely different

types of image distortion/quality maps. Similar results are also obtained with all the other

VQEG test metrics [21]. To compare the proposed approach with other visual attention

based quality assessment models, we have also included the spatial information content-

based attention and weighting model by Wang and Shang [19] in Table 1. It appears that

this visual attention model is also helpful in improving the performance of both PSNR and

SSIM (consistent improvements are observed for all data sets), but not as effective as the

proposed model.

Figures 5(a), 5(b), 5(c), and 5(d) show the scatter plots of the subjective/objective com-
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parisons on all VQEG test video sequences for PSNR, PSNR with proposed weighting, SSIM,

and SSIM with proposed weighting, respectively. These scatter plots confirm the ROCC re-

sults shown in Table 1. It can be seen that applying the proposed weighting model has made

visible impact on the tightness of the clusters of sample points (each associated with a test

video sequence), which reflects the consistency between subjective and objective evaluations.

5. Discussion

The design of VQA algorithms is an important engineering problem that has a wide range of

real-world applications. It is also a highly challenging problem because the ultimate purpose

of VQA is to emulate the performance of the biological visual system, which is extremely

complicated. In the development of VQA algorithms, it is desirable to maintain a good

balance between accuracy and complexity. If there were an objective system that could

simulate all related aspects of the HVS, including its built-in knowledge about the visual

environment, then it should provide precise prediction of perceived video quality. However,

such systems are likely to require complex implementations and intensive computations,

making them cumbersome in practical applications. Therefore, a great deal of effort should

be made to simplify the models without significantly losing their accuracy. We strongly

believe that using high-level hypotheses about the overall behaviors of the visual system is

an effective and efficient way to achieve this goal. Specifically, it seems promising to model

the visual perception process in an information communication framework, and the results

of a few recent IQA/VQA papers [4,11,19] as well as this paper supply initial support of this

approach. Another simplification we are making in this paper is that we assume the local

information content and perceptual uncertainty in a video signal are proportional to the local

information content and perceptual uncertainty of speed perception. This also seems to be a

useful approach to capture the important aspects of video perception while maintaining the

proposed algorithm as a computationally tractable engineering solution.

One interesting observation in Table 1 is that the proposed weighting method results

in larger improvement for the SSIM-based method as compared to the MSE/PSNR-based

method. This is somewhat counterintuitive as the basic SSIM metric by itself has already

included some extent of human visual characteristics. This is a complicated issue that is

worth further investigation. One explanation might be that the absolute error map (the

first step in computing MSE/PSNR) gives a very poor indication of local image quality, as

exemplified by Fig. 4. As a result, even when an accurate local weighting function is applied

to the map, it may not help much. Instead, sometimes it might unluckily assign large weights

to the regions that the absolute error map is giving very wrong estimates about local image

quality, leading to even worse results.

The proposed algorithm may be improved and/or extended in many ways. First, there
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Fig. 5. Scatter plots of subjective/objective scores on VQEG Phase I test

database (all video sequences included). The vertical and horizontal axes rep-

resent the subjective and the objective scores, respectively. Each sample point

represents one test video sequence. (a) PSNR; (b) PSNR with proposed weight-

ing method; (c) SSIM; (D) SSIM with proposed weighting method. All SSIM

values were raised to the 8th power for visualization purpose only.
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might be better ways to combine the information content and the perceptual uncertainty

measures. Second, the computation of local image contrast and the estimation of motion

vectors may be improved. For example, we frequently observe instabilities in the current

optical flow-based motion estimation algorithm, especially in the video frames with large

background motion. This implies that more robust motion estimation method is needed in

the existence of noise and large motion. Third, the sophistication and the high-level nature

of the proposed model make its parameters difficult to calibrate. More careful psychovisual

studies are still needed. Fourth, the weighting function computed based on our model is

effective and consistent in improving the performance of VQA algorithms in all the tests

we have done so far (with MSE/PSNR and SSIM). Other VQA algorithms may also be

included to further validate the model. Finally, the general idea of quality map weighting

does not constrain itself to be used for full-reference VQA only, as being tested in this paper

(Note that both the MSE/PSNR and the SSIM calculations require access to the original

video sequence as a reference). If a no-reference method is available that can provide us

with a quality map without using any reference video, the same weighting approach is also

applicable. Such no-reference or blind VQA systems are highly desirable in the real world

and are yet to be developed in the future.
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