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Abstract—We propose a perceptual two-pass rate control
scheme for High Efficiency Video Coding (HEVC). The target
bits are optimally allocated by hierarchically constructing a per-
ceptual uniform space derived based on an SSIM-inspired divisive
normalization mechanism for each group of pictures (GoP), each
frame, and each coding unit (CU). The Lagrange multiplier λ,
which controls the trade-off between perceptual distortion and
bit rate, is adopted as the GoP level complexity measure. After
the first pass compression, Laplacian based rate and perceptual
distortion models are established to adaptively derive λ, and the
target bits are dynamically allocated by maintaining an uniform
Lagrange multiplier level through λ equalization. Within each
GoP, rate control is further performed at frame and CU levels
in the perceptually uniform space. Extensive simulations verify
that, the proposed scheme can achieve high accuracy rate control
and superior rate-SSIM performance.

Index Terms—Two-pass rate control, divisive normalization,
SSIM index, High Efficiency Video Coding

I. INTRODUCTION

Recently, there has been an exponentially increasing de-
mand of high definition (HD) and beyond-HD videos, which
has been creating an ever stronger demand for high perfor-
mance video coding technologies. The high efficiency video
coding (HEVC) standard [1], which was jointly developed
by ITU-T Video Coding Expert Group (VCEG) and ISO/IEC
Moving Picture Experts Group (MPEG), was claimed to bring
more than 50% coding gain compared to H.264/AVC. In
HEVC, many novel coding techniques are developed. At the
block level, an adaptive quadtree structure based on the coding
tree unit (CTU) was employed, and three new concepts, named
coding unit (CU), prediction unit (PU) and transform unit
(TU), are introduced to specify the basic processing unit
of coding, prediction and transform [2]. At the frame level,
flexible reference management scheme based on the concept
of reference frame set (RFS) was adopted to support the
hierarchical coding structure [3].

Practically, to apply the video coding standards in real appli-
cation scenarios, rate control schemes need to be incorporated
into the encoder (for example, TM5 for MPEG-2, TMN8 for
H.263 and VM8 for MPEG-4). In HEVC, several rate control
algorithms are proposed, targeting at constant bit rate (CBR)
coding. In [4], an adaptive rate control scheme was proposed
by modeling the Rate-Quantization relationship with frame
complexity, and Laplacian distribution based CTU level bit
allocation is further developed to improve the coding perfor-
mance. In [5], Lagrange parameter (λ) domain rate control was

proposed, in which the quantization parameter (QP) value for
each frame is obtained by the corresponding λ value. In [6],
[7], considering the new reference frame selection mechanism,
Rate-GOP based distortion and rate models were established
and ρ domain rate control was proposed for HEVC, where ρ
represents the percentage of zero coefficients in a frame after
quantization.

Though these rate control algorithms have achieved substan-
tial performance in control accuracy and coding performance,
variable bit rate (VBR) coding of HEVC has not been fully
investigated in the literature. In H.264/AVC, two-pass rate
control for VBR coding have been intensively studied [8]–[10].
A general idea is to model scene complexity according to the
first-pass statistics, and the quantization parameters for each
frame can be derived according to the distributed bits. The
task of optimal bit allocation can be converted into a typical
Rate Distortion Optimization (RDO) problem to optimize the
quality of the whole sequence. Central to such an optimization
problem is the way in which the distortion D is defined, so
that the overall quality of the whole video can approach what
it is optimized for. This motivated us to employ the structural
similarity (SSIM) index [11] as the image quality measure,
which has been widely applied in various image/video pro-
cessing areas due to its good compromise between quality
evaluation accuracy and computation efficiency. In [12]–[14],
SSIM-based RDO schemes were proposed, which shows good
perceptual rate distortion performance. In [15], it is shown that
substantial difference between SSIM and MSE lies in a locally
adaptive divisive normalization process, which motivated us
to develop divisive normalization based video coding schemes
[16], [17] on the platform of H.264/AVC and HEVC.

In this paper, we propose a perceptual two-pass VBR
scheme within the SSIM-inspired divisive normalization video
coding framework. The RD performance is optimized by
dynamically balancing the λ value for each frame, which is
adaptively derived by establishing perceptual distortion and
rate models. Constructively, adaptive GoP level, frame level
and CTU level rate control schemes are proposed by trans-
forming the prediction residuals into a perceptually uniform
space.

II. SSIM-BASED DIVISIVE NORMALIZATION FOR
PERCEPTUAL VIDEO CODING

The proposed rate control scheme follows the divisive
normalization based perceptual video coding approach [16],
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[17], in which the DCT transform coefficient of a residual
block Ck is normalized with a positive normalization factor
f :

C(k)′ = C(k)/f. (1)

As such, the quantization process of the normalized residuals
for a given predefined Qs can be formulated as

Q(k) = sign{C(k)′}round{ |C(k)′|
Qs

+ p}

= sign{C(k)}round{ |C(k)|
Qs · f

+ p},
(2)

where p is the rounding offset in the quantization.
This implies that the quantization parameters for each

coding unit can be adaptively adjusted according to the divisive
normalization process. The factor f , which accounts for the
perceptual importance, is derived from the SSIM index in DCT
domain,

fdc =
1
l

∑l
i=1

√
Xi(0)2 + Yi(0)2 +N · C1

E(
√
X(0)2 + Y (0)2 +N · C1)

(3)

fac =
1
l

∑l
i=1

√∑N−1
k=1 (Xi(k)2+Yi(k)2)

N−1 + C2

E(

√∑N−1
k=1 (X(k)2+Y (k)2)

N−1 + C2)

, (4)

where X and Y represents the DCT coefficients for the
original and distorted blocks. E(·) denotes the expectation
quantity over the whole sequence. N denotes the size of the
block, and C1, C2 are constants according to the definition of
SSIM index [11]. Only the original block is used because the
distorted one cannot be accessed before the actual encoding.
Moreover, to be compatible with the HEVC standard, only fac
is applied to derive ∆QP for each coding unit.

The divisive normalization process transfers the perceptual
importance to the transform coefficients, so that the coeffi-
cients with higher energy correspond to higher perceptual im-
portance, and vice versa. This provides us with more flexibility
in modeling the RD relationship for VBR rate control.

III. TWO-PASS VBR RATE CONTROL

The flowchart of the two-pass rate control algorithm is
presented in Fig. 1. The first pass encoding is performed with
a constant QP, and the statistics are recorded for the second
pass. Before the second pass coding, GoP level bit allocation
is carried out to derive the optimal bit assignment for each
GoP, which is further adjusted by frame level and CU level
rate control to achieve even better performance.

A. GoP level Bit Allocation

The optimal bit allocation for perceptual VBR coding is
formulated as follows,

min{D} subject to

n∑
i=1

Ri ≤ Rc, (5)

where Ri represents the coding rate for each GoP, and Rc is
the constraint on the total permissible rate.

Since the ultimate receiver of video is the Human Visual
System (HVS), the correct optimization goal should be the
overall perceptual quality. Existing rate control algorithms
typically optimize the sum of absolute difference (SAD) or
mean square error (MSE) with the constraint of frame level
quality smoothness. However, it is widely recognized that
maintaining a frame level constant MSE does not ensure
constant perceived video quality. In this work, the overall
quality of the whole video is defined as the average distortion
in terms of the SSIM-based divisive normalized MSE for each
GoP,

D =

n∑
i=1

Di, (6)

where Di denotes the MSE in the divisive normalization do-
main for the ith GoP. According to the divisive normalization
process, the GoPs with the same MSE in the pixel domain may
produce different Di, because smaller normalization factors
are assigned to perceptually more important GoPs.

Assume the Lagrange multiplier of the ith GoP is λi, the
optimal strategy that can achieve the minimization of D is to
maintain a constant level of λi for all GoPs [18],

λ1 = λ2 = ... = λi = λn. (7)

To find the optimal λ value, we start with an initial guess
and iteratively adjust it until the best λ∗ is obtained for∑n
i=1Ri(λ

∗) = Rc, within a convex hull approximation [19].
It is noted that λ here is not the one specified by the

encoder. For example, in HM codec λ is only determined
by the frame type, QP and frame level, regardless of the
properties of the video content. In view of various video
content, the λ derivation should be adapted to the properties
of the input sequences (statistical properties of residuals,
structural information, etc.) [12]. For the same QP value with
different residual energy, the optimal λ spans a wide range
[16].

Theoretically, the optimal λ is obtained by calculating the
derivative of the rate distortion cost J with respect to R, then
setting it to zero, which is formulated as

dJ

dR
=
d(D + λR)

dR
=
dD

dR
+ λ = 0, (8)

leading to

λ = −dD
dR

. (9)

To derive λ, statistical models of both rate and distortion
should be established. We employ the Laplacian distribution,
which achieves a good balance between complexity and accu-
racy. The density of the normalized transformed residuals x
in the Laplace distribution is given by

fLap(x) =
Λ

2
· e−Λ·|x|, (10)

where Λ denotes the Laplacian distribution parameter.



Fig. 1. Flowchart of the proposed two-pass rate control algorithm.

Considering the quantization process with quantization step
Q and rounding offset γ, the distortion and rate can be
modeled as [20],

Di =α ·

(∫ (Q−γQ)

−(Q−γQ)

x2
i fLap(xi)dxi+

2

∞∑
n=1

∫ (n+1)Q−γQ

nQ−γQ
(xi − nQ)2fLap(xi)dxi

)

R =β ·

(
−P0 · log2 P0 − 2

∞∑
n=1

Pn · log2 Pn

)
,

(11)

where α and β are control parameters to ensure the accuracy
of the estimation. In (11), the probabilities of the transformed
residuals that are quantized to the zero-th and n-th quantization
levels P0 and Pn are modeled by the Laplace distribution as
well.

Before the second pass encoding, the λ-Q curve for each
GoP is obtained by incorporating (11) into (9). This implies
that due to the divisive normalization process, the derivation of
λ spontaneously takes the perceptual factors into consideration
by calculating λ with residual distribution in perceptually
uniform domain. For example, there are two GoPs with the
same prediction residual distribution but different perceptual
importance, in which the first GoP is more important with a
smaller normalization factor f . Assume the Lagrange multi-
pliers of the two GoPs are λ1 and λ2, respectively. The first
GoP has relatively smaller Λ, so that for the same Q, λ1 > λ2.
This indicates that to achieve a balance between the two GoPs,
it is reasonable to lower λ1 by borrowing more bits from the
second GoP to the first GoP, so that λ2 will increase until
λ1 = λ2. Otherwise, it is always beneficial to perform bit
allocation to achieve better overall quality. This is also the
case when the two GoPs have the same perceptual importance
but different prediction residual energy.

B. Frame and CTU level Rate Control

The task of the frame level rate control is to derive an
appropriate QP value according to the target bits. Though
(11) provides a solution in modeling the R-Q relationship, it
is difficult to directly compute QP from the input R. Motivated
by the RD analysis in HEVC [4], [21] and TM5 [22], we apply
the sum of absolute transformed differences (SATD) in divisive

normalization domain for QP derivation, which is formulated
as

R = α ·X/QP, (12)

where X denotes the relative complexity computed by

X = (

∑n
i=0 wi ·DN SATDi∑n−1
i=0 wi ·DN SATDi

)β ·Rn−1 ·QPn−1, (13)

where DN SATDi denotes the SATD in the divisive nor-
malization domain and wi represents the relative weighting
for each frame:

wi = 0.5n−1/

n∑
i=0

0.5n−i. (14)

The parameter DN SATDi estimates the perceptual com-
plexity at the frame level by computing the SATD in the
divisive normalization domain, which implies that perceptually
important frame will consume more bits because of the energy
amplification of residuals. In our implementation, to compute
Q before coding the frame, LCU level motion estimation is
performed to compute DN SATDi.

The CU level rate control is performed by dynamically
assigning each CU an appropriate ∆QP value according to its
relative importance. As the frame level coding bits is derived
in the perceptually uniform domain, it becomes natural to
perform divisive normalization for each CU with (1), where
the expectation E(·) in (5) is obtained within each frame to
compute the relative importance of each CU. This provides the
foundation of the proposed rate control algorithm, such that
the optimization in GoP and frame level are both achieved in
the divisive normalization domain.

IV. EXPERIMENTAL RESULTS

To verify the efficiency of the proposed rate control scheme,
we integrate it into the HM13.0 software [23] and compare it
with the recommended algorithm (both frame and LCU levels)
in HM [5]. The RD performance and rate control accuracy
is evaluated with multiple scene video sequences of different
resolutions in random access main configuration (RA Main)
and low delay B main configuration (LDB Main). The rate
control accuracy is measured by

Accu =
|Rtarget −Ractual|

Rtarget
× 100% (15)



TABLE I
PERFORMANCE COMPARISON BASED ON THE R-λ METHOD [5] (RA MAIN).

Sequence (Seq1∼Seq7) Rtarget
Anchor Proposed

∆R* ∆R**
Ractual SSIM MS-SSIM BitErr Ractual SSIM MS-SSIM BitErr

Basketballpass@WQVGA
BlowingBubbles@WQVGA

BQSquare@WQVGA
RaceHorses@WQVGA

756.67 757.57 0.9486 0.9913 0.12% 757.51 0.9527 0.9922 0.11%

-6.61% -5.53%366.76 367.53 0.9039 0.9802 0.21% 367.66 0.9099 0.9817 0.25%
180.46 181.07 0.8373 0.9581 0.34% 181.13 0.8449 0.9607 0.37%
90.63 91.02 0.7579 0.9222 0.43% 90.78 0.7615 0.9227 0.17%

Coastguard@CIF
Container@CIF

Flower@CIF
News@CIF

563.72 557.47 0.9644 0.9927 1.11% 563.27 0.9689 0.9940 0.08%

-16.0% -20.13%272.79 272.70 0.9349 0.9852 0.03% 273.63 0.9430 0.9876 0.31%
134.31 134.60 0.8893 0.9711 0.21% 135.05 0.9028 0.9765 0.55%
68.39 68.65 0.8223 0.9407 0.38% 68.91 0.8445 0.9570 0.77%

Flowervase@WVGA
Keiba@WVGA

Mobisode@WVGA
RaceHorses@WVGA

1379.94 1386.57 0.9352 0.9761 0.48% 1379.14 0.9527 0.9879 0.06%

-48.0% -63.66%642.00 648.76 0.9055 0.9550 1.05% 643.59 0.9232 0.9727 0.25%
314.82 347.26 0.8876 0.9446 10.31% 315.76 0.9136 0.9738 0.30%
156.15 178.95 0.8577 0.9238 14.60% 156.28 0.8678 0.9495 0.09%

Mobcal@720P
Parkrun@720P
Shields@720P

11186.72 11186.81 0.9306 0.9886 0.00% 11190.06 0.9405 0.9911 0.03%

-29.9% -42.96%4822.68 4822.69 0.9000 0.9800 0.00% 4827.57 0.9190 0.9866 0.10%
2179.14 2179.15 0.8551 0.9635 0.00% 2192.39 0.8788 0.9763 0.61%
974.10 967.76 0.7869 0.9353 0.65% 978.86 0.8070 0.9533 0.49%

BigShip@720P
Raven@720P

ShuttleStart@720P

3002.67 3002.67 0.9583 0.9902 0.00% 3002.24 0.9616 0.9912 0.01%

-19.0% -25.31%1283.18 1283.18 0.9368 0.9811 0.00% 1285.64 0.9427 0.9840 0.19%
584.52 584.84 0.9018 0.9603 0.05% 587.07 0.9132 0.9700 0.44%
271.36 271.57 0.8619 0.9316 0.07% 273.03 0.8722 0.9438 0.61%

Sunflower@1080P
Tractor@1080P
Kimono@1080P

ParkScene@1080P

3706.52 3740.76 0.9539 0.9900 0.92% 3723.05 0.9572 0.9912 0.45%

-11.9% -11.24%1744.67 1764.65 0.9345 0.9816 1.15% 1753.63 0.9396 0.9839 0.51%
863.28 873.39 0.9063 0.9669 1.17% 865.61 0.9113 0.9696 0.27%
445.18 449.62 0.8682 0.9411 1.00% 447.47 0.8729 0.9452 0.51%

Cactus@1080P
BasketballDrive@1080P

Crowd run@1080P

16504.51 16504.60 0.9164 0.9858 0.00% 16503.10 0.9240 0.9882 0.01%

-20.9% -23.41%7623.10 7639.32 0.8855 0.9756 0.21% 7622.85 0.8996 0.9812 0.00%
3731.18 3745.64 0.8445 0.9581 0.39% 3727.32 0.8588 0.9658 0.10%
1860.52 1873.15 0.7954 0.9309 0.68% 1860.38 0.8035 0.9375 0.01%

* Rate reduction while maintaining SSIM.
** Rate reduction while maintaining MS-SSIM.

TABLE II
PERFORMANCE COMPARISON BASED ON THE R-λ METHOD [5] (LDB MAIN).

Sequences (Seq1∼Seq7) Rtarget
Anchor Proposed

∆R* ∆R**
Ractual SSIM MS-SSIM BitErr Ractual SSIM MS-SSIM BitErr

Basketballpass@WQVGA
BlowingBubbles@WQVGA

BQSquare@WQVGA
RaceHorses@WQVGA

859.37 859.18 0.9461 0.9910 0.02% 859.19 0.9524 0.9926 0.02%

-9.25% -11.34%393.53 393.45 0.8965 0.9786 0.02% 393.40 0.9053 0.9819 0.03%
180.46 180.42 0.8222 0.9530 0.02% 180.43 0.8319 0.9579 0.01%
85.75 85.74 0.7404 0.9132 0.00% 85.77 0.7475 0.9180 0.03%

Coastguard@CIF
Container@CIF

Flower@CIF
News@CIF

642.42 642.37 0.9618 0.9919 0.01% 643.95 0.9580 0.9908 0.24%

-15.6% -19.36%283.81 283.81 0.9281 0.9830 0.00% 283.73 0.9367 0.9857 0.03%
126.44 126.44 0.8789 0.9678 0.00% 126.37 0.8920 0.9730 0.05%
55.31 55.31 0.8066 0.9409 0.00% 55.30 0.8234 0.9494 0.02%

Flowervase@WVGA
Keiba@WVGA

Mobisode@WVGA
RaceHorses@WVGA

1527.82 1527.41 0.9384 0.9774 0.03% 1528.00 0.9547 0.9896 0.01%

-55.7% -73.96%664.59 664.42 0.9048 0.9564 0.03% 664.54 0.9414 0.9857 0.01%
304.07 304.07 0.8729 0.9279 0.00% 303.69 0.9085 0.9721 0.12%
144.30 144.40 0.8436 0.9019 0.07% 144.28 0.8642 0.9465 0.02%

Mobcal@720P
Parkrun@720P
Shields@720P

12618.54 12618.61 0.9299 0.9882 0.00% 12615.32 0.9390 0.9907 0.03%

-41.4% -52.58%5116.98 5117.10 0.8942 0.9778 0.00% 5115.71 0.9080 0.9825 0.02%
2050.96 2051.03 0.8476 0.9593 0.00% 2050.79 0.8836 0.977 0.01%
810.00 805.72 0.7882 0.9297 0.53% 811.18 0.8142 0.9544 0.15%

BigShip@720P
Raven@720P

ShuttleStart@720P

3141.34 3141.43 0.9570 0.9897 0.00% 3141.96 0.9605 0.9908 0.02%

-13.9% -10.09%1172.40 1172.02 0.9346 0.9809 0.03% 1172.51 0.9392 0.9824 0.01%
464.30 463.57 0.8988 0.9636 0.16% 464.04 0.9051 0.9661 0.06%
185.17 185.17 0.8489 0.9293 0.00% 185.16 0.8578 0.9341 0.00%

Sunflower@1080P
Tractor@1080P
Kimono@1080P

ParkScene@1080P

3854.38 3854.26 0.9521 0.9897 0.00% 3852.33 0.9561 0.9912 0.05%

-16.9% -14.40%1711.08 1706.49 0.9293 0.9798 0.27% 1712.80 0.9359 0.9824 0.10%
793.85 790.10 0.8953 0.9612 0.47% 795.63 0.9050 0.9661 0.22%
383.60 384.94 0.8536 0.9295 0.35% 383.89 0.8632 0.9369 0.08%

Cactus@1080P
BasketballDrive@1080P

Crowd run@1080P

18201.93 18201.98 0.9171 0.9863 0.00% 18202.30 0.9204 0.9876 0.00%

-20.1% -20.93%8125.05 8125.07 0.8831 0.9756 0.00% 8127.74 0.8985 0.9811 0.03%
3850.69 3850.71 0.8404 0.9572 0.00% 3853.43 0.8547 0.9644 0.07%
1863.99 1863.99 0.7898 0.9282 0.00% 1864.80 0.7956 0.9333 0.04%

* Rate reduction while maintaining SSIM.
** Rate reduction while maintaining MS-SSIM.

The rate control performance in terms of the BD-Rate and
control accuracy is demonstrated in Table I&II. Each test
video is generated by three or four video shots with different
statistical properties. It can be observed that the proposed bit
allocation scheme can significantly improve the rate distortion
performance. On average, in terms of SSIM, 24.7% bit rate
reduction for LDB Main and 21.7% bit rate reduction for
RA Main are observed. This is because the proposed bit
allocation method ensures a global optimal bit distribution
according to the statistics of the first pass encoding. Moreover,
the proposed scheme is also able to achieve high control
accuracy, which enables its applications in real scenarios.

We further demonstrate the SSIM variations for one 720P
sequences in Fig. 2. To quantitatively evaluate the variations,
the standard deviations of SSIM of the anchor and proposed
scheme are computed as well. We can observe that although
our approach does not involve a smooth term in the quality

evaluation, it can create smoother quality sequences. One can
discern that more bits are allocated into sequence Parkrun
from Mobcal and Shield, so that the quality of the recon-
structed video is much smoother with low SSIM variance.
This originates from the divisive normalization based rate
control approach, which automatically allocates more bits to
the areas that may create more perceptual distortion, and
therefore results in smoother video quality.

V. CONCLUSIONS

In this paper, we propose a two-pass perceptual VBR coding
scheme based on an SSIM inspired divisive normalization
framework. The novelty of the scheme lies in hierarchically
constructing a perceptually uniform space for GoP, frame,
and CU level rate control. The λ equalization with Laplacian
distribution modeling of the transform residuals is employed,
which adaptively allocates the coding bits to each GoP. R-



(a) LDB Main (Anchor) (b) LDB Main (Proposed)

(c) RA Main (Anchor) (d) RA Main (Proposed)

Fig. 2. Frame level SSIM comparison between anchor (left) and the proposed scheme (right) on LDB Main (top) and RA Main (bottom) for seq4. The
standard deviations of SSIM are: (a) 0.1198; (b) 0.059; (c) 0.126; (d) 0.065.

Q relationship based on SATD in the divisive normalization
domain is further adopted to obtain the frame level QP given
a target bit rate. The proposed scheme demonstrates high rate
control performance in terms of both control accuracy and RD
performance.
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