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1 Introduction other words, only ranking of or statistical information con-

Images are often contaminated by impulse noise during cerning neighboring pixel values is employed. We consider

transmission through communication channels. It is impor- these kinds of information to be insufficient to represent the

tant to eliminate noise in the images before subsequent pro_real structure, such as direction and curvature, of the local

cessing such as edge detection, image segmentation, anaegion. Substantiall_y different from previqus algorithms,
object recognition. A large variety of filtering algorithms our new approach is developed by modeling the local re-

have been proposed to perform effective noise cancellationJ'o" Using some function approximation algorithms, so that

wil preserving the mage sirucure? Typical amples. L <o, o1 e SIUCLIE o e food Wow. e cener,
include the neighborhood mean filter and the median filter. pted p P

Nevertheless, because these filters are implemented uni< omply with the structural information. In particular, the
formly acrosé the image, they tend to modify both noise polynomial approximation technique is used in the paper,

pixels and undisturbed good pixels, resulting in blurring of which is easy to operate and is effective in modeling local

the | To avoid the d f good pixels, the switch- "¢9IoNS:

theimage. fo avold the damage of good pIX€is, the SWICh- ;4 paper is organized as follows. Section 2 describes
ing strategy was |ptroduced by some recently published the impulse noise model assumed by our experiments and
work,}~39~12where impulse detectors are employed to pre-

. > e presents an iterative impulse detection algorithm that pro-
select the pixels that should be modified. This kind of tech- \;ijeq s with more accurate detection results than those of

nique has proved to be more effective than uniformly ap- previously proposed methods. In Sec. 3, the polynomial
plied methods. . ) approximation(PA) filter is introduced. Section 4 studies
The approach we are proposing also uses an impulseihe influence of the polynomial order on the PA filter and
detector to categorize all the plxel_s in the image into two proposes an adaptive-order polynomial approximation
classes—noise pixels and good pixels, i.e., noise-free pix-(AOPA) filter that can automatically determine the polyno-
els. These classification results are used in two ways duringmjal order by investigating some statistical features of local
the filtering procedure. First, only pixels indexed as im- yregions. Some further simulation and comparison results

pulses are modified. Second, the filter uses merely the in-are provided in Sec. 5. Finally, a brief conclusion is drawn
formation of noise-free pixels as the source to estimate thej, sec. 6.

corrupted pixel values.

To replace an impulse pixel with a new value, various 2 Noise Model and Impulse Detector
methods can be developed to make an estimation. How- .
ever, almost all previously published algorithms, as far as 2-1  /mpulse Noise Model
we know, replace the corrupted value with one from a local Images may be contaminated by various sorts of noises.
window or some linear combination of local samples. In The type of noise considered by our algorithm is only im-
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pulsive noise whose value is generally independent of the
strength of the image signal. Lef; andx;; denote the gray
levels at locationi(,j) of the original image and the noisy
image, respectively. Then for an impulse noise model with
noise probabilityp,,, we have

_ | 9

with probability 1-p,

Xij with probability p, @

wheren;; is a noise value independent froay, . In this
paper, two cases of noise distributions are considered. In

the first case, the values of the corrupted pixels are equal toxi<.“>:

the maximum or minimum of the allowed dynamic range
with equal probability. This kind of noise is commonly

=1,2,...), foreach pixelx""", we also first find the
median value of the samples in al(2+1)X(2L4+1)
window centered about it:

(n=1)
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The difference betweem{ " andx{{'~") is the criterion
to determine whethex("*) should be changed:
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m{"~Y'=med{x LY x

n-1)_
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otherwise
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referred to as salt-and-pepper noise. In the other case, theSUppose the iteration stops after tNg'th iteration. The

corrupted pixel values are uniformly distributed between
the maximum and minimum allowed dynamic range. For
8-bpp(bits/pixe) gray-level images, the noise luminance of
the first case corresponds to a fixed value of 0 or 255 with

equal probability, while that of the second case corresponds

to a random value uniformly distributed between 0 and 255.

2.2 Impulse Detector

Our impulse detection algorithm is developed based on two
assumptions:(1) a noise-free image should be locally
smoothly varying and is separated by edgesd(2) a noise
pixel takes a gray value substantially larger than or smaller
than those of its neighbors.

Sun and Neuvo introduced a simple and effective
method to detect noises in their switch | scheinale
briefly describe it as follows. Lex;; represents the pixel
values at positioni(j) in the corrupted image. To judge
whetherx;; is an impulse pixel, we find the median value of
the samples in the 23+ 1)X(2L4+ 1) window centered
about it, i.e.,
mij=med{xi,|_d’j,|_d, ""Xij y ...’Xi+Ld‘j+Ld}. (2)
The difference betweemy;; and x;; is used to detect im-
pulses:

1 if |Xij_mij|>Td
7|0 otherwise ®)
Here T4 is a predefined threshold value. The binary value
fj; indicates whetheri(j) is considered as an impulse, i.e.,
fi;=1 meansj) is a corrupted pixel; otherwisei,() is
noise free.

This detection method is adopted by our algorithm. In
addition, we also developed a modified version to improve
detection accuracy. The modified version is implemented in
an iterative manner where the noisy pixels detected in the
current iteration are modified and used to help the detection
of other noisy pixels in the subsequent iterations. A main
advantage of such an iterative procedure is that some im-
pulse pixels located in the middle of large noise blotches
can also be properly detected and filtered. L%?i denote
the pixel value at positioni(j) in the initial noisy image
and letx{{” represent the pixel value at positionj) in the
image after then'th iteration. In the n’th iteration (n
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flag valuef;; is then given as:
1 if x(Q#xNe

fii= oo
0 otherwise

i (6)
Before the real implementation of our impulse detector, the
parameterd y, T4, and Ny should be predetermined. In
our simulations, a &3 sized window always gives better
results than larger windows, so we choase= 1. However,

it is not as easy to seledy and Ny, because they are
sensitive to the type of the noise. Figures 1 and 2 show
typical examples of the correct detection rates as functions
of T4 and Ny for fixed-valued and random-valued impul-
sive noise, respectively. Here, i is the number of good
pixels that are correctly detected as good pix€Elds the
number of noise pixels that are correctly detected as noise
pixels, andG is the total number of pixels in the image,
then the detection correct rate is calculated as
(E+F)/G. In Figs. 1 and 2, it appears that the best results
can be obtained from two or three iterations when the im-
ages are corrupted by fixed-valued noise, while for the case
of random-valued noise, no iteration is needed, N,

=1 is the best. It can be also observed that the BHgdor
fixed-valued noise is larger than that for random-valued
noise. According to these facts, we always Uige= 35 and
Ny=3 for fixed-valued impulse noise angj=20 andNy

=1 (i.e., no iteration for random-valued impulse noise in
the remaining part of this paper.

3 PA Filter

Consider a (2;+1)X(2L;+1) square region centered
about an impulse pixelig,jo) with f; ; =1. The pixels in

the region can be categorized into two classes—good pixels
(fi;=0) and impulse pixelsf(;=1). Only good pixels are
used by the PA filter, which models the local region using
a 2-D polynomial. For simplicity, we shift the position of
the center pixeli@,jo) to (0,00 and normalize the square
region so that its top-left and bottom-right corners are lo-
cated at ¢1,—1) and (+1,+1), respectively:

@)

wherey, is the pixel value under the new coordinate and
we have

Ypg=Xij »
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Fig. 1 Example of the influence of detection parameters on the detection correct rate for fixed-valued
impulse noise. The test image is “Lena” corrupted by 20% noise. (a) Correct rate as a function of N,
where T, is a fixed value of 35, and (b) correct rate as a function of T,, where N, is a fixed value of
3.
p=(i—ig)/Ly aq=(j—jo)/Ls. (8) Ypg= Coot+ C1oP + Co10+ C20P*+ Coz9°+C11P Q. (10

Then the approximation polynomial can be denoted as

K K-m
)A/pq= 2 E Cmnpmqnv 9
m=0 n=0
where{c,,/m=0,... K; n=0,... m—K} is a set of co-

efficients, andK is the order of the polynomial. For ex-
ample, a two-order polynomial can be written as:
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The calculated value o§7pq can be used to estimate the
value ofx;; :

)A(ij:g/pqv (11
where
i=igtpLs j=jotals. (12
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Fig. 2 Example of the influence of detection parameters on the detection correct rate for random-
valued impulse noise. The test image is “Lena” corrupted by 20% noise. (a) Correct rate as a function
of Ny, where T, is a fixed value of 20, and (b) correct rate as a function of T,, where N, is a fixed

value of 1.
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Table 1 Filtering results in PSNR for “Lena” corrupted with fixed-valued impulse noise.

Percentage of Fixed-Valued Impulse Noise

Filtering Algorithm 10% 15%

20% 25% 30%

Zero-order PA filter 36.60 dB 35.64 dB 34.65 dB 33.66 dB 32.31 dB
One-order PA filter 36.64 dB 35.65 dB 34.71 dB 33.69 dB 32.36 dB
Two-order PA filter 39.48 dB 38.61 dB 37.44 dB 36.26 dB 34.22 dB
Three-order PA filter 39.63 dB 38.79 dB 37.56 dB 35.74 dB 33.03 dB
AOPA filter 39.60 dB 38.79 dB 37.57 dB 36.27 dB 34.21 dB
-0.03 dB 0.00 dB +0.01 dB +0.01 dB -0.01 dB
The set of coefficientéc,,, should be well selected so that 4 AOPA Filter

the good pixels in the local region are best approximated

under the condition of the least squared error. The squared?-1 Study of Polynomial Order

error is calculated as

L L
E= > E (1—f) (x;;— %)%

i=-L¢j=-L¢

(13

The minimum ofE is achieved when the deviation &f
with respect to everg,,, are all 0:

JEldCrmp=0 (m=0,... n=0,... K—m). (14

By solving these equations, the value of eagh, can be
obtained. Finally, the center pixed ; is replaced by the

estimated value:

(15

Xi jo™ Yoo= Coo-

olo

As a special case, the zero-order PA filter has only one
coefficientcyg and the solution of Eq(14) is simply

Lt
Ei:—Lf

Lt
il

EjLL_Lf(l_fij)Xij

Coo= (16)

S (L=t

that is, coo equals the average value of the good pixels in
the square region. Therefore, the zero-order PA filter can
also be viewed as a noise-free neighborhood mean filter.

Only two parameterd, ; andK, should be predefined be-
fore the application of the PA filter. Our simulations indi-
cate that in most cases, &% sized square region is the
best for the performance of the polynomial approximation
algorithm, so we set ;=2. Determining the polynomial
orderK is not an easy task. The proper valuekotiepends

on how many details are embraced in the local region and
how much the region is corrupted. In this subsection, we
investigate the performance of a fixed-order FROPA)
filter, where the value oK is invariable throughout the
whole image. Then in the next subsection, an AOPA filter
is introduced, whereK is adjusted to comply with some
local statistical features. In all the experiments, the test im-
ages are 512512, 8-bpp gray-level images. Peak signal-
to-noise ratiofPSNR is used to assess the filtering results:

255

PSNR=10 lo ,
GO DS 3T (0 —1;)2

17

wherer is the size of the imager £512), ando;; andt;;
are the pixel values at positiori,{) within the original
image and the test image, respectively.

In Tables 1 and 2, we list the filtering results of zero-,
one-, two-, and three-order PA filters, where the original
image “Lena” is corrupted with 10 to 30% fixed-valued
and random-valued impulse noise, respectively. Basically,
higher polynomial order, such as two- or three-order, leads

Table 2 Filtering results in PSNR for “Lena” corrupted with random-valued impulse noise.

Percentage of Random-Valued Impulse Noise

Filtering Algorithm 10% 15% 20% 25% 30%
Zero-order PA filter 34.41 dB 33.34 dB 32.39 dB 31.41 dB 30.25 dB
One-order PA Filter 34.44 dB 33.38 dB 32.38 dB 31.41 dB 30.23 dB
Two-order PA filter 36.68 dB 35.30 dB 33.99 dB 32.59 dB 30.87 dB
Three-order PA filter 36.80 dB 35.32 dB 33.75 dB 32.12 dB 29.67 dB
AOPA filter 36.79 dB 35.36 dB 34.00 dB 32.57 dB 30.86 dB
—0.01 dB +0.04 dB +0.01 dB —0.02 dB —0.01 dB
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1

1 if i=ig and j=]jq

oo~ |0 otherwise

19

The calculation ofdioj0 is equivalent to applying the fol-

lowing 3X 3 mask to the image:

------ 3-order polynomial M M M
o  2-order estimation point 1-f -1 1-fi j,+1
& 3-order estimation point - 20 1 -0
L Il 1 1 1 [ 1 M M
-3.00 200 -1.00 0.00 100 200 3.00 C Mo T e I figragen
M M M
Fig. 3 Example that demonstrates the approximation and estima- } (20)
tion functions of two- and three-order polynomials.
where
_ o ) iptl o+l
to higher PSNR. The reason is simply because higher orderM —g— 2 Z i 1)

polynomials can reflect more complex characteristics, such
as direction and curvature, of local regions. However, this
is not always true, especially when the noise rates are high.Actually, such a mask can be viewed as a revised version of
For instance, the PSNR performance of the two-order PA one of the Laplacian maskshat are useful in detecting
filter for 30% random-valued impulse noise is 30.87 dB, lines, line ends, and points over edges. The only difference
which is substantially higher than 29.67 dB of the three- is that it considers merely good neighboring pixels with
order PA filter. We think the main reason is that low-order f;;=0. In other words, the typical Laplacian mask is a spe-
polynomi_als are more robust than high-order ones. Tq dem-jal case of our revised version, where gJi=0. Our new
onstrate it clearly, we use a simple 1-D examflee Fig.  mask, which we call a noise-free Laplacian filter, is capable
3), where both a two- and a three-order polynomial are o eyaluating how many details a certain area of the image

used to estimate the point at 0.00 using the five sample contains even under the condition that impulse noises exist
points provided. Both of the polynomials are obtained un- j, the image.

der the condition of least squared error. It can be observed  Now we describe how our AOPA filter determines the
Lh"’g although the tthreet-r?rder pollynor_mtal _curvteh performs 41vnomial order. For an impulse pixel at positiaig (),
etter in approximating the sample points, 1.€., € CUVe IS\, "o yse the information within a @2+1)x(2L¢+1)

closer fo the sample points, the estimated value for the indow centered about it as the source to give an estima-

oint at 0.00 seems too high, not as good as that estimated. . . .
Ey the two-order polynom?al. This pr?enomenon is Some_dtllvon on the pixel. First, we count how many good pixels are

times called overmatching. Another drawback of a high- in the window:
order PA is that it leads to a high computation burden,

i=ig-1 j=jo-1

ig+Lf o+l
which is not justified, especially when dealing with very S ozf (1—f.) 22)
smooth regions. For such regions, a zero- or one-order ==, j={o=L; ne

polynomial is enough to give a good approximation within
much less time. Second, a quantitative estimation of how much the local

region is corrupted is given as

4.2 AOPA Filter R

For a certain region in the image, an appropriate choice of U= 2L +1)?2
the polynomial order is determined mainly by two factors.
The first is how many details the region contains and the
second is how much the region is contaminated. Our AOPA
filter is developed according to some quantitative evalua-
tions of these two factors.

Before the description of the AOPA filter, however, we
first define a detail estimation valmi:oj0 for each good

pixel in the image. Atio,jo) with f; ; =0, we have

(23

Next, a rough estimation of how many details the local
region contains is calculated as follows:

iptLg jotLs

—r S 3

Ri=fo=L i=To-Ls

(1—fip)ldjl. (24

Note that only good pixels in the window are considered.
Our adaptive algorithm decides the order of the polynomial

g+l jo+1
o, e s e by combining the influences of both of these two factors
Gigio = Xigio™ i=%—1 j:%,l (=) (1= digig)xij (18) andv. The synthesized value is defined as
where s=u®®, (25)
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where the use ad andb is to offer us with the flexibility to 25 g} Bppr ey
adjust the weights af andv. Finally, the polynomial order =) - l'order
is provided as 3 20 7 —-—- l-order PA|
) PO B AR 2-order PA
Yo if 0sss<Tg g 15 - — — ~ 3-order PA
2 (= -7 —— AOPA
~ Y1 if TSO<S$TSl (26) %D 10 r// -----
Ya= 92 if Tsl<s$ TSZ, *‘SL /__ﬁ
yz if Tep<s E S o
O pioomiTiTIT oo -
wherey,, Yo, Y1, Y2, andy; denote the estimated value of 0 '
the AOPA, zero-order PA, one-order PA, two-order PA, 10 15 20 25 30
and three-order PA techniques, respectively, agd T, Percentage of Noise

andT,, are threshold values that categorizginto one of

Fig. 4 Comparison of computing time for various PA filters. The test
four classes. 9 P puting

image “Lena” is corrupted by fixed-valued impulse noise with a
noise rate ranging from 10 to 30%. The simulations are conducted
on a Pentium 166M PC computer.

5 Simulations and Comparisons
To assess the performance of our algorithms, some com-
puter simulations are carried out on several standard gray-
level images. In all the experiments concerning the AOPA uses some extra time to classify each impulse pixel to be
filter, the parameters are selected as follows: filtered by one of the four PA techniques. It appears that a
three-order PA filter always requires much more time than
a=3,b=1, T4(=0.5 T4=0.8, andT,,=3.0. (27) other PA filters. The computing time of AOPA filter is
close to that of the two-order PA filter. When the noise rate
Tables 1 and 2 give the PSNR performance of zero-orderis low, the pure two-order PA filter spends less time. We
PA, one-order PA, two-order PA, three-order PA, and think that such a small amount of extra time is worthwhile
AOPA filters, where the original image “Lena” is cor- because the PSNR performance of AOPA filter is better
rupted with 10 to 30% fixed-valued and random-valued im- than that of the pure two-order PA filtdsee Table P
pulse noise, respectively. In each case, the best resultsVhen noise rate is high, the two-order PA filter requires
among the zero-, one-, and three-order PA filters are more time than the AOPA filter. In such a case, the AOPA
printed in bold. When the noise rate is low, the best result is and the pure two-order PA filters provide almost the same
usually obtained by the three-order PA filter. However, PSNR results, while AOPA filter is better at saving time.
with the increase of noise rate, the two-order PA filter To demonstrate the visual quality of the filtering results,
gradually outperforms three-order PA filter. The perfor- we show an enlarged area of “Lena” in Fig. 5, where the
mance of AOPA filter traces the best result of the four image is corrupted by 20% fixed-valued impulse noise. It
FOPA filters. Its PSNR is sometimes slightly higher or
sometimes slightly lower than the best of the four. The last
rows of the two tables present the differences of the PSNR
performance between the AOPA filter and the best of the
four FOPA filters. The absolute values of the differences
are always very close to 0, ranging from 0.00 to 0.04 dB.
Obviously, we prefer the AOPA filter in real applications
because for a given corrupted image, it is difficult for us to
predetermine which of the four FOPA filters is the best. In
addition, in comparison with high-order FOPA filters, the
AOPA filter may, in some way, save computing time be-
cause some of the regions are approximated by low-order &
polynomials. For example, for the case that the image
“Lena” is corrupted by 30% fixed-valued impulse noise,
32.19% of the noise pixels are filtered by the zero-order PA
method, 23.05% by the one-order PA method, 38.71% by
the two-order PA method, and only 6.04% are filtered by
the three-order PA method. Since the zero- and one-order
PA methods perform much faster than the two- and three-
order PA techniques, a lot of time can be saved by the
AOPA filter in comparison with pure two- or three-order
PA filters. Note that even though most of the noise pixels
are not filtered by the two-order PA technique, the PSNR
performance of the AOPA filter is very close to that of the
two-order PA filter, which is significantly better than the .. = ) Enlarged area of “Lena” corrunted by 20% fixed-valued
other three FOPA filters. In Fig. 4, we compare the perfor- im%ulse( n)oise, (%) restoration result by thpe one)-/order PA filter, (c)
mance speed of different PA filters, where the AOPA filter restoration result by the AOPA filter, and (d) the original image area.
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Table 3 Comparative restoration results in PSNR for 20% impulse noise for image “Lena.”

Fixed-Value Random-Valued
Filtering Algorithm Impulses (dB) Impulses (dB)
Median filter (3X3) 28.57 29.76
Median filter (5X5) 28.78 28.59
Median filter with adaptive length? 30.57 31.18
Rank-conditioned rank selection filter® 31.36 30.78
Switch | median filter® 31.97 31.34
Switch 1l median filter® 29.96 32.04
Abreu et al.1® (M=1296) (inside training set) 35.70 33.37
Fuzzy approach®! 36.47 33.78
Zero-order PA filter 34.65 32.39
One-order PA filter 34.71 32.38
Two-order PA filter 37.44 33.99
Three-order PA filter 37.56 33.75
AOPA filter 37.57 34.00

For fixed-valued impulse noise, impulses take on only the values 0 or 255 with equal probability. For
random-valued impulse noise, impulse values are uniformly distributed between 0 and 255. See Refs.

10 and 11 for parameter selection schemes.

can be observed that the one-order PA filter can give only a
rough approximation of the corrupted pixels, while the
AOPA filter provides much more detail.

In Table 3, we compare our PA filter with other state-
of-the-art algorithms. Abreu et al. reported many restora-
tion results in PSNR for images corrupted by both 20%
fixed-valued and random-valued impulse noise§ome
filtering results of a fuzzy approach developed by us are
also provided! We list some of these data and add the
PSNR performance of our FOPA and AOPA filters to the
table. It can be observed that for the case of fixed-valued
impulse noise, the two-order PA, three-order PA, and
AOPA filters provide significant improvement over all the
other approaches, while for the case of random-valued im-
pulse noise, the two-order PA, three-order PA, and AOPA
filters are also the best and only the fuzzy appréachn
compete with them. In Figs. 6 and 7, we show some re-
stored images obtained by different filtering methods which
are the typical X3 and 5<x5 median filter, the switch |
median filter® and our AOPA filter. In Fig. 6, the test im-
age “Bridge” is corrupted by 30% random-valued impulse
noise, while in Fig. 7, the test image “Peppers” is cor-
rupted by 30% fixed-valued impulse noise. With a small
window size of 3x 3, the typical median filter misses many
impulse pixels remaining in the image. When larger win-
dow size such as 85 is applied, almost all the impulses
are removed, but many good pixels are also modified, re-
sulting in blurring of the image. The switch | median filter
can well preserve good pixels while eliminating noise pix-
els, but still many impulses remained unaltered. Dramatic
restoration results are obtained by the AOPA filter. It can
remove almost all of the noise pixels while preserve image
details very well. Note also that although the parameters are
optimized for the “Lena” image, good restoration results
are still obtained for different types of images such as
“Peppers” and “Bridge” under different occurrence rates
of the impulse noise.

Fig. 6 Comparative restoration results for “Bridge” corrupted by
30% random-valued impulse noise: (a) the corrupted image, (b) im-
age restored by the 3 X 3 median filter, (c) image restored by 5X5
median filter, (d) image restored by the switch | scheme, (e) image
restored by the AOPA filter, and (f) the original image of “Bridge.”
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Fig. 7 Comparative restoration results for “Peppers” corrupted by
30% fixed-valued impulse noise: (a) the corrupted image, (b) image
restored by the 3 X3 median filter, (c) image restored by the 5X5
median filter, (d) image restored by the switch | scheme, (e) image
restored by the AOPA filter, and (f) the original image of “Peppers.”

6 Conclusion
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