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Abstract. A novel filtering algorithm is presented to restore images cor-
rupted by impulsive noise. As a preprocessing procedure of the noise
cancellation filter, an improved impulse detector is used to generate a
binary flag image, which gives each pixel a flag indicating whether it is an
impulse. This flag image has two uses: (1) a pixel is modified only when
it is considered as an impulse; otherwise, it is left unchanged, and (2)
only the values of the good pixels are employed as useful information by
the noise cancellation filter. To remove noises from the corrupted image,
we propose a new filter called a polynomial approximation (PA) filter,
which is developed by modeling a local region with a polynomial that can
best approximate the region under the condition of least squared error.
Furthermore, an adaptive approach is introduced to automatically deter-
mine the orders of the polynomials. The proposed two kinds of PA filters,
fixed-order and adaptive-order PA filters, are tested on images corrupted
by both fixed-valued and random-valued impulsive noise. Major improve-
ments are obtained in comparison with other state-of-the-art algorithms.
© 1998 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(98)02904-3]
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1 Introduction

Images are often contaminated by impulse noise du
transmission through communication channels. It is imp
tant to eliminate noise in the images before subsequent
cessing such as edge detection, image segmentation
object recognition. A large variety of filtering algorithm
have been proposed to perform effective noise cancella
while preserving the image structure.1–12 Typical examples
include the neighborhood mean filter and the median fil
Nevertheless, because these filters are implemented
formly across the image, they tend to modify both no
pixels and undisturbed good pixels, resulting in blurring
the image. To avoid the damage of good pixels, the swit
ing strategy was introduced by some recently publish
work,1–3,9–12where impulse detectors are employed to p
select the pixels that should be modified. This kind of te
nique has proved to be more effective than uniformly a
plied methods.

The approach we are proposing also uses an imp
detector to categorize all the pixels in the image into t
classes—noise pixels and good pixels, i.e., noise-free
els. These classification results are used in two ways du
the filtering procedure. First, only pixels indexed as i
pulses are modified. Second, the filter uses merely the
formation of noise-free pixels as the source to estimate
corrupted pixel values.

To replace an impulse pixel with a new value, vario
methods can be developed to make an estimation. H
ever, almost all previously published algorithms, as far
we know, replace the corrupted value with one from a lo
window or some linear combination of local samples.
Opt. Eng. 37(4) 1275–1282 (April 1998) 0091-3286/98/$10.00
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other words, only ranking of or statistical information co
cerning neighboring pixel values is employed. We consi
these kinds of information to be insufficient to represent
real structure, such as direction and curvature, of the lo
region. Substantially different from previous algorithm
our new approach is developed by modeling the local
gion using some function approximation algorithms, so t
it can tell the structure of the local window. The cent
corrupted pixel is then replaced with a value that can b
comply with the structural information. In particular, th
polynomial approximation technique is used in the pap
which is easy to operate and is effective in modeling lo
regions.

This paper is organized as follows. Section 2 descri
the impulse noise model assumed by our experiments
presents an iterative impulse detection algorithm that p
vides us with more accurate detection results than thos
previously proposed methods. In Sec. 3, the polynom
approximation~PA! filter is introduced. Section 4 studie
the influence of the polynomial order on the PA filter a
proposes an adaptive-order polynomial approximat
~AOPA! filter that can automatically determine the polyn
mial order by investigating some statistical features of lo
regions. Some further simulation and comparison res
are provided in Sec. 5. Finally, a brief conclusion is draw
in Sec. 6.

2 Noise Model and Impulse Detector

2.1 Impulse Noise Model

Images may be contaminated by various sorts of nois
The type of noise considered by our algorithm is only im
1275© 1998 Society of Photo-Optical Instrumentation Engineers
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Zhang and Wang: Impulse noise removal . . .
pulsive noise whose value is generally independent of
strength of the image signal. Letoi j andxi j denote the gray
levels at location (i , j ) of the original image and the nois
image, respectively. Then for an impulse noise model w
noise probabilitypn , we have

xi j 5 Hoi j

ni j

with probability 12pn

with probability pn
, ~1!

where ni j is a noise value independent fromoi j . In this
paper, two cases of noise distributions are considered
the first case, the values of the corrupted pixels are equ
the maximum or minimum of the allowed dynamic ran
with equal probability. This kind of noise is common
referred to as salt-and-pepper noise. In the other case
corrupted pixel values are uniformly distributed betwe
the maximum and minimum allowed dynamic range. F
8-bpp~bits/pixel! gray-level images, the noise luminance
the first case corresponds to a fixed value of 0 or 255 w
equal probability, while that of the second case correspo
to a random value uniformly distributed between 0 and 2

2.2 Impulse Detector

Our impulse detection algorithm is developed based on
assumptions:~1! a noise-free image should be local
smoothly varying and is separated by edges3 and~2! a noise
pixel takes a gray value substantially larger than or sma
than those of its neighbors.

Sun and Neuvo introduced a simple and effect
method to detect noises in their switch I scheme.3 We
briefly describe it as follows. Letxi j represents the pixe
values at position (i , j ) in the corrupted image. To judg
whetherxi j is an impulse pixel, we find the median value
the samples in the (2Ld11)3(2Ld11) window centered
about it, i.e.,

mi j 5med$xi 2Ld , j 2Ld
, ...,xi j , ...,xi 1Ld , j 1Ld

%. ~2!

The difference betweenmi j and xi j is used to detect im-
pulses:

f i j 5 H1
0

if uxi j 2mi j u>Td

otherwise . ~3!

HereTd is a predefined threshold value. The binary va
f i j indicates whether (i , j ) is considered as an impulse, i.e
f i j 51 means (i , j ) is a corrupted pixel; otherwise, (i , j ) is
noise free.

This detection method is adopted by our algorithm.
addition, we also developed a modified version to impro
detection accuracy. The modified version is implemente
an iterative manner where the noisy pixels detected in
current iteration are modified and used to help the detec
of other noisy pixels in the subsequent iterations. A m
advantage of such an iterative procedure is that some
pulse pixels located in the middle of large noise blotch
can also be properly detected and filtered. Letxi j

(0) denote
the pixel value at position (i , j ) in the initial noisy image
and letxi j

(n) represent the pixel value at position (i , j ) in the
image after then’th iteration. In the n’th iteration (n
1276 Optical Engineering, Vol. 37 No. 4, April 1998
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51,2, . . . ), for each pixelxi j
(n21) , we also first find the

median value of the samples in a (2Ld11)3(2Ld11)
window centered about it:

mi j
~n21!5med$xi 2Ld , j 2Ld

~n21! , ...,xi j
~n21! , ...,xi 1Ld , j 1Ld

~n21! %.

~4!

The difference betweenmi j
(n21) and xi j

(n21) is the criterion
to determine whetherxi j

(n21) should be changed:

xi j
~n!5H mi j

~n21!

xi j
~n21!

if uxi j
~n21!2mi j

~n21!u>Td

otherwise
. ~5!

Suppose the iteration stops after theNd’th iteration. The
flag valuef i j is then given as:

f i j 5H 1
0

if xi j
~0!Þxi j

~Nd!

otherwise
. ~6!

Before the real implementation of our impulse detector,
parametersLd , Td , and Nd should be predetermined. I
our simulations, a 333 sized window always gives bette
results than larger windows, so we chooseLd51. However,
it is not as easy to selectTd and Nd , because they are
sensitive to the type of the noise. Figures 1 and 2 sh
typical examples of the correct detection rates as functi
of Td and Nd for fixed-valued and random-valued impu
sive noise, respectively. Here, ifE is the number of good
pixels that are correctly detected as good pixels,F is the
number of noise pixels that are correctly detected as n
pixels, andG is the total number of pixels in the image
then the detection correct rate is calculated
(E1F)/G. In Figs. 1 and 2, it appears that the best resu
can be obtained from two or three iterations when the
ages are corrupted by fixed-valued noise, while for the c
of random-valued noise, no iteration is needed, i.e.,Nd

51 is the best. It can be also observed that the bestTd for
fixed-valued noise is larger than that for random-valu
noise. According to these facts, we always useTd535 and
Nd53 for fixed-valued impulse noise andTd520 andNd

51 ~i.e., no iteration! for random-valued impulse noise i
the remaining part of this paper.

3 PA Filter

Consider a (2L f11)3(2L f11) square region centere
about an impulse pixel (i 0 , j 0) with f i 0 , j 0

51. The pixels in
the region can be categorized into two classes—good pi
( f i j 50) and impulse pixels (f i j 51). Only good pixels are
used by the PA filter, which models the local region usi
a 2-D polynomial. For simplicity, we shift the position o
the center pixel (i 0 , j 0) to ~0,0! and normalize the squar
region so that its top-left and bottom-right corners are
cated at (21,21) and (11,11), respectively:

ypq5xi j , ~7!

whereypq is the pixel value under the new coordinate a
we have
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Fig. 1 Example of the influence of detection parameters on the detection correct rate for fixed-valued
impulse noise. The test image is ‘‘Lena’’ corrupted by 20% noise. (a) Correct rate as a function of Nd ,
where Td is a fixed value of 35, and (b) correct rate as a function of Td , where Nd is a fixed value of
3.
-

e

p5~ i 2 i 0!/L f q5~ j 2 j 0!/L f . ~8!

Then the approximation polynomial can be denoted as

ŷpq5 (
m50

K

(
n50

K2m

cmnp
mqn, ~9!

where$cmnum50, . . . ,K; n50, . . . ,m2K% is a set of co-
efficients, andK is the order of the polynomial. For ex
ample, a two-order polynomial can be written as:
ŷpq5c001c10p1c01q1c20p
21c02q

21c11pq. ~10!

The calculated value ofŷpq can be used to estimate th
value ofxi j :

x̂i j 5 ŷpq , ~11!

where

i 5 i 01pLf j 5 j 01qLf . ~12!
Fig. 2 Example of the influence of detection parameters on the detection correct rate for random-
valued impulse noise. The test image is ‘‘Lena’’ corrupted by 20% noise. (a) Correct rate as a function
of Nd , where Td is a fixed value of 20, and (b) correct rate as a function of Td , where Nd is a fixed
value of 1.
1277Optical Engineering, Vol. 37 No. 4, April 1998
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Table 1 Filtering results in PSNR for ‘‘Lena’’ corrupted with fixed-valued impulse noise.

Filtering Algorithm

Percentage of Fixed-Valued Impulse Noise

10% 15% 20% 25% 30%

Zero-order PA filter 36.60 dB 35.64 dB 34.65 dB 33.66 dB 32.31 dB

One-order PA filter 36.64 dB 35.65 dB 34.71 dB 33.69 dB 32.36 dB

Two-order PA filter 39.48 dB 38.61 dB 37.44 dB 36.26 dB 34.22 dB

Three-order PA filter 39.63 dB 38.79 dB 37.56 dB 35.74 dB 33.03 dB

AOPA filter 39.60 dB 38.79 dB 37.57 dB 36.27 dB 34.21 dB

20.03 dB 0.00 dB 10.01 dB 10.01 dB 20.01 dB
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The set of coefficients$cmn% should be well selected so tha
the good pixels in the local region are best approxima
under the condition of the least squared error. The squ
error is calculated as

E5 (
i 52L f

L f

(
j 52L f

L f

~12 f i j !~xi j 2 x̂i j !
2. ~13!

The minimum ofE is achieved when the deviation ofE
with respect to everycmn are all 0:

]E/]cmn50 ~m50, . . . ,K; n50, . . . ,K2m!. ~14!

By solving these equations, the value of eachcmn can be
obtained. Finally, the center pixelxi 0 j 0

is replaced by the
estimated value:

x̂i 0 j 0
5 ŷ005c00. ~15!

As a special case, the zero-order PA filter has only o
coefficientc00 and the solution of Eq.~14! is simply

c005
( i 52L f

L f ( j 52L f

L f ~12 f i j !xi j

( i 52L f

L f ( j 52L f

L f ~12 f i j !
, ~16!

that is,c00 equals the average value of the good pixels
the square region. Therefore, the zero-order PA filter
also be viewed as a noise-free neighborhood mean filte
neering, Vol. 37 No. 4, April 1998
d

4 AOPA Filter

4.1 Study of Polynomial Order

Only two parameters,L f andK, should be predefined be
fore the application of the PA filter. Our simulations ind
cate that in most cases, a 535 sized square region is th
best for the performance of the polynomial approximati
algorithm, so we setL f52. Determining the polynomia
orderK is not an easy task. The proper value ofK depends
on how many details are embraced in the local region
how much the region is corrupted. In this subsection,
investigate the performance of a fixed-order PA~FOPA!
filter, where the value ofK is invariable throughout the
whole image. Then in the next subsection, an AOPA fil
is introduced, whereK is adjusted to comply with some
local statistical features. In all the experiments, the test
ages are 5123512, 8-bpp gray-level images. Peak sign
to-noise ratio~PSNR! is used to assess the filtering resul

PSNR510 log10

2552

~1/r 2!( i 51
r ( j 51

r ~oi j 2t i j !
2 , ~17!

wherer is the size of the image (r 5512), andoi j and t i j

are the pixel values at position (i , j ) within the original
image and the test image, respectively.

In Tables 1 and 2, we list the filtering results of zero
one-, two-, and three-order PA filters, where the origin
image ‘‘Lena’’ is corrupted with 10 to 30% fixed-value
and random-valued impulse noise, respectively. Basica
higher polynomial order, such as two- or three-order, le
Table 2 Filtering results in PSNR for ‘‘Lena’’ corrupted with random-valued impulse noise.

Filtering Algorithm

Percentage of Random-Valued Impulse Noise

10% 15% 20% 25% 30%

Zero-order PA filter 34.41 dB 33.34 dB 32.39 dB 31.41 dB 30.25 dB

One-order PA Filter 34.44 dB 33.38 dB 32.38 dB 31.41 dB 30.23 dB

Two-order PA filter 36.68 dB 35.30 dB 33.99 dB 32.59 dB 30.87 dB

Three-order PA filter 36.80 dB 35.32 dB 33.75 dB 32.12 dB 29.67 dB

AOPA filter 36.79 dB 35.36 dB 34.00 dB 32.57 dB 30.86 dB

20.01 dB 10.04 dB 10.01 dB 20.02 dB 20.01 dB
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Zhang and Wang: Impulse noise removal . . .
to higher PSNR. The reason is simply because higher o
polynomials can reflect more complex characteristics, s
as direction and curvature, of local regions. However, t
is not always true, especially when the noise rates are h
For instance, the PSNR performance of the two-order
filter for 30% random-valued impulse noise is 30.87 d
which is substantially higher than 29.67 dB of the thre
order PA filter. We think the main reason is that low-ord
polynomials are more robust than high-order ones. To d
onstrate it clearly, we use a simple 1-D example~see Fig.
3!, where both a two- and a three-order polynomial a
used to estimate the point at 0.00 using the five sam
points provided. Both of the polynomials are obtained u
der the condition of least squared error. It can be obser
that although the three-order polynomial curve perfor
better in approximating the sample points, i.e., the curv
closer to the sample points, the estimated value for
point at 0.00 seems too high, not as good as that estim
by the two-order polynomial. This phenomenon is som
times called overmatching. Another drawback of a hig
order PA is that it leads to a high computation burde
which is not justified, especially when dealing with ve
smooth regions. For such regions, a zero- or one-o
polynomial is enough to give a good approximation with
much less time.

4.2 AOPA Filter

For a certain region in the image, an appropriate choice
the polynomial order is determined mainly by two facto
The first is how many details the region contains and
second is how much the region is contaminated. Our AO
filter is developed according to some quantitative eval
tions of these two factors.

Before the description of the AOPA filter, however, w
first define a detail estimation valuedi 0 j 0

for each good

pixel in the image. At (i 0 , j 0) with f i 0 j 0
50, we have

di 0 j 0
5xi 0 j 0

2
1

M (
i 5 i 021

i 011

(
j 5 j 021

j 011

~12 f i j !~12d i 0 j 0
!xi j , ~18!

where

Fig. 3 Example that demonstrates the approximation and estima-
tion functions of two- and three-order polynomials.
r

.

-

d

r

d i 0 j 0
5 H1

0
if i 5 i 0 and j 5 j 0

otherwise . ~19!

The calculation ofdi 0 j 0
is equivalent to applying the fol-

lowing 333 mask to the image:

3
2

12 f i 021,j 021

M
2

12 f i 021,j 0

M
2

12 f i 021,j 011

M

2
12 f i 0 , j 021

M
1 2

12 f i 0 , j 011

M

2
12 f i 011,j 021

M

12 f i 011,j 0

M
2

12 f i 011,j 011

M

4 ,

~20!

where

M582 (
i 5 i 021

i 011

(
j 5 j 021

j 011

f i j . ~21!

Actually, such a mask can be viewed as a revised versio
one of the Laplacian masks1 that are useful in detecting
lines, line ends, and points over edges. The only differe
is that it considers merely good neighboring pixels w
f i j 50. In other words, the typical Laplacian mask is a sp
cial case of our revised version, where allf i j 50. Our new
mask, which we call a noise-free Laplacian filter, is capa
of evaluating how many details a certain area of the ima
contains even under the condition that impulse noises e
in the image.

Now we describe how our AOPA filter determines th
polynomial order. For an impulse pixel at position (i 0 , j 0),
we still use the information within a (2L f11)3(2L f11)
window centered about it as the source to give an esti
tion on the pixel. First, we count how many good pixels a
in the window:

R5 (
i 5 i 02L f

i 01L f

(
j 5 j 02L f

j 01L f

~12 f i j !. ~22!

Second, a quantitative estimation of how much the lo
region is corrupted is given as

u5
R

~2L f11!2 . ~23!

Next, a rough estimation of how many details the loc
region contains is calculated as follows:

v5
1

R (
i 5 i 02L f

i 01L f

(
j 5 j 02L f

j 01L f

~12 f i j !udi j u. ~24!

Note that only good pixels in the window are considere
Our adaptive algorithm decides the order of the polynom
by combining the influences of both of these two factorsu
andv. The synthesized value is defined as

s5uavb, ~25!
1279Optical Engineering, Vol. 37 No. 4, April 1998
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Zhang and Wang: Impulse noise removal . . .
where the use ofa andb is to offer us with the flexibility to
adjust the weights ofu andv. Finally, the polynomial order
is provided as

ŷa5H ŷ0

ŷ1

ŷ2

ŷ3

if 0<s<Ts0

if Ts0,s<Ts1

if Ts1,s<Ts2

if Ts2,s

, ~26!

whereŷa , ŷ0 , ŷ1 , ŷ2 , andŷ3 denote the estimated value o
the AOPA, zero-order PA, one-order PA, two-order P
and three-order PA techniques, respectively, andTs0 , Ts1 ,
andTs2 are threshold values that categorizeŷa into one of
four classes.

5 Simulations and Comparisons

To assess the performance of our algorithms, some c
puter simulations are carried out on several standard g
level images. In all the experiments concerning the AO
filter, the parameters are selected as follows:

a53, b51, Ts050.5, Ts150.8, andTs253.0. ~27!

Tables 1 and 2 give the PSNR performance of zero-or
PA, one-order PA, two-order PA, three-order PA, a
AOPA filters, where the original image ‘‘Lena’’ is cor
rupted with 10 to 30% fixed-valued and random-valued i
pulse noise, respectively. In each case, the best re
among the zero-, one-, and three-order PA filters
printed in bold. When the noise rate is low, the best resu
usually obtained by the three-order PA filter. Howev
with the increase of noise rate, the two-order PA fil
gradually outperforms three-order PA filter. The perfo
mance of AOPA filter traces the best result of the fo
FOPA filters. Its PSNR is sometimes slightly higher
sometimes slightly lower than the best of the four. The l
rows of the two tables present the differences of the PS
performance between the AOPA filter and the best of
four FOPA filters. The absolute values of the differenc
are always very close to 0, ranging from 0.00 to 0.04 d
Obviously, we prefer the AOPA filter in real application
because for a given corrupted image, it is difficult for us
predetermine which of the four FOPA filters is the best.
addition, in comparison with high-order FOPA filters, th
AOPA filter may, in some way, save computing time b
cause some of the regions are approximated by low-o
polynomials. For example, for the case that the ima
‘‘Lena’’ is corrupted by 30% fixed-valued impulse nois
32.19% of the noise pixels are filtered by the zero-order
method, 23.05% by the one-order PA method, 38.71%
the two-order PA method, and only 6.04% are filtered
the three-order PA method. Since the zero- and one-o
PA methods perform much faster than the two- and thr
order PA techniques, a lot of time can be saved by
AOPA filter in comparison with pure two- or three-ord
PA filters. Note that even though most of the noise pix
are not filtered by the two-order PA technique, the PS
performance of the AOPA filter is very close to that of t
two-order PA filter, which is significantly better than th
other three FOPA filters. In Fig. 4, we compare the perf
mance speed of different PA filters, where the AOPA fil
1280 Optical Engineering, Vol. 37 No. 4, April 1998
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r
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r

uses some extra time to classify each impulse pixel to
filtered by one of the four PA techniques. It appears tha
three-order PA filter always requires much more time th
other PA filters. The computing time of AOPA filter i
close to that of the two-order PA filter. When the noise ra
is low, the pure two-order PA filter spends less time. W
think that such a small amount of extra time is worthwh
because the PSNR performance of AOPA filter is be
than that of the pure two-order PA filter~see Table 2!.
When noise rate is high, the two-order PA filter requir
more time than the AOPA filter. In such a case, the AOP
and the pure two-order PA filters provide almost the sa
PSNR results, while AOPA filter is better at saving time

To demonstrate the visual quality of the filtering resul
we show an enlarged area of ‘‘Lena’’ in Fig. 5, where t
image is corrupted by 20% fixed-valued impulse noise

Fig. 4 Comparison of computing time for various PA filters. The test
image ‘‘Lena’’ is corrupted by fixed-valued impulse noise with a
noise rate ranging from 10 to 30%. The simulations are conducted
on a Pentium 166M PC computer.

Fig. 5 (a) Enlarged area of ‘‘Lena’’ corrupted by 20% fixed-valued
impulse noise, (b) restoration result by the one-order PA filter, (c)
restoration result by the AOPA filter, and (d) the original image area.
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Table 3 Comparative restoration results in PSNR for 20% impulse noise for image ‘‘Lena.’’

Filtering Algorithm
Fixed-Value

Impulses (dB)
Random-Valued
Impulses (dB)

Median filter (333) 28.57 29.76

Median filter (535) 28.78 28.59

Median filter with adaptive length2 30.57 31.18

Rank-conditioned rank selection filter5 31.36 30.78

Switch I median filter3 31.97 31.34

Switch II median filter3 29.96 32.04

Abreu et al.10 (M51296) (inside training set) 35.70 33.37

Fuzzy approach11 36.47 33.78

Zero-order PA filter 34.65 32.39

One-order PA filter 34.71 32.38

Two-order PA filter 37.44 33.99

Three-order PA filter 37.56 33.75

AOPA filter 37.57 34.00

For fixed-valued impulse noise, impulses take on only the values 0 or 255 with equal probability. For
random-valued impulse noise, impulse values are uniformly distributed between 0 and 255. See Refs.
10 and 11 for parameter selection schemes.
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can be observed that the one-order PA filter can give on
rough approximation of the corrupted pixels, while t
AOPA filter provides much more detail.

In Table 3, we compare our PA filter with other stat
of-the-art algorithms. Abreu et al. reported many resto
tion results in PSNR for images corrupted by both 20
fixed-valued and random-valued impulse noises.10 Some
filtering results of a fuzzy approach developed by us
also provided.11 We list some of these data and add t
PSNR performance of our FOPA and AOPA filters to t
table. It can be observed that for the case of fixed-val
impulse noise, the two-order PA, three-order PA, a
AOPA filters provide significant improvement over all th
other approaches, while for the case of random-valued
pulse noise, the two-order PA, three-order PA, and AO
filters are also the best and only the fuzzy approach11 can
compete with them. In Figs. 6 and 7, we show some
stored images obtained by different filtering methods wh
are the typical 333 and 535 median filter, the switch I
median filter,3 and our AOPA filter. In Fig. 6, the test im
age ‘‘Bridge’’ is corrupted by 30% random-valued impul
noise, while in Fig. 7, the test image ‘‘Peppers’’ is co
rupted by 30% fixed-valued impulse noise. With a sm
window size of 333, the typical median filter misses man
impulse pixels remaining in the image. When larger w
dow size such as 535 is applied, almost all the impulse
are removed, but many good pixels are also modified,
sulting in blurring of the image. The switch I median filte
can well preserve good pixels while eliminating noise p
els, but still many impulses remained unaltered. Dram
restoration results are obtained by the AOPA filter. It c
remove almost all of the noise pixels while preserve ima
details very well. Note also that although the parameters
optimized for the ‘‘Lena’’ image, good restoration resu
are still obtained for different types of images such
‘‘Peppers’’ and ‘‘Bridge’’ under different occurrence rate
of the impulse noise.
Fig. 6 Comparative restoration results for ‘‘Bridge’’ corrupted by
30% random-valued impulse noise: (a) the corrupted image, (b) im-
age restored by the 333 median filter, (c) image restored by 535
median filter, (d) image restored by the switch I scheme, (e) image
restored by the AOPA filter, and (f) the original image of ‘‘Bridge.’’
1281Optical Engineering, Vol. 37 No. 4, April 1998
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6 Conclusion

In this paper, a new impulse noise removal approach
introduced that is developed using impulse detection
polynomial approximation techniques. The proposed
pulse replacement method breaks through the traditio
framework in that it is not designed by employing mere
the ranking or statistical information and replacing the c
rupted value with one from the local window or some line
combination of local samples, but is implemented by mo
eling the local region using a polynomial, which is mo
powerful in representing the real structure of the region.
adaptive method is also presented that can automatic
give an appropriate polynomial order for a local region.
has been proved to be very successful in obtaining g
restoration results while saving computation time. Simu
tion results show that the proposed approach significa
outperforms many well-known techniques.

Fig. 7 Comparative restoration results for ‘‘Peppers’’ corrupted by
30% fixed-valued impulse noise: (a) the corrupted image, (b) image
restored by the 333 median filter, (c) image restored by the 535
median filter, (d) image restored by the switch I scheme, (e) image
restored by the AOPA filter, and (f) the original image of ‘‘Peppers.’’
1282 Optical Engineering, Vol. 37 No. 4, April 1998
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