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ABSTRACT

In real-world visual communications, it is a common experience

that end-users receive video with significantly time-varying qual-

ity due to the variations in video content/complexity, codec con-

figuration, and network conditions. How human visual quality-

of-experience (QoE) changes with such time-varying video qual-

ity is not yet well-understood. To investigate this issue, we con-

duct subjective experiments designed to examine the quality pre-

dictability between individual video segment of relatively con-

stant quality and combined video consisting of multiple segments

that have significantly different quality. Our data analysis sug-

gests that simple models that pool segment-level quality, such

as linear averaging and weighted-averaging, nonlinear min- and

median-filtering, and distortion-weighted averaging, are limited

in predicting the overall human quality assessment of the com-

bined video. We thus propose a quality adaptation model that is

asymmetrically tuned to increasing and decreasing quality. The

proposed asymmetric adaptation (AA) model leads to improved

performance of both subjective and objective quality assessment

approaches when using segment-level quality scores to predict

multi-segment time-varying video quality. The video database

together with the subjective data will be made available to the

public.

Index Terms— visual quality-of-experience, time-varying

video quality, temporal pooling, video quality assessment

1. INTRODUCTION

In practical network digital video communication systems, the

source video content is subject to a series of distortions during

the compression and transmission processes before being deliv-

ered to the end receivers. Very often, the quality of the received

video varies over time. The source of such time-varying video

quality may be at the sender side or within the communication

network. At the sender side, video is compressed to meet the

bandwidth constraints. Because of the large variations in the spa-

tial/temporal/motion complexity in the video content, it is diffi-

cult to maintain constant video quality while making the best

use of the communication channels, which often prefer approxi-

mately constant bit rate. In the communication network, packet

loss and delay occur in somewhat random fashion, which, com-

bined with the complexity of the coded video stream, often result

in complicated distortions and quality variations when the video

is decoded at the receiver side. Error correction and concealment

techniques are commonly applied to partially recover the video

but their performance varies as well.

Video quality assessment (VQA) has been an active subject

of study in the past decades [1], but how human visual quality-

of-experience (QoE) changes with time-varying video quality (in

the scale of seconds or longer, rather than frames) is still an unre-

solved issue. Although quite many video quality databases have

been built and subjective experiments conducted to study spatial

and temporal video quality, they are not directly applicable in

developing and validating computational models of time-varying

video quality, because most video sequences in these databases

consist of one scene or occasionally a few scenes of similar con-

tent and distorted in similar fashion, and thus in the scale of

seconds or longer, they have fairly stable quality. Much less

has been done in the area of predicting perceptual experience

of time-varying video quality. Viewer response to time-varying

video quality using a single stimulus continuous quality evalua-

tion (SSCQE) in light of forgiveness, recency, and negative-peak

and duration-neglect effects were studied in [2]. The findings

of this study were applied in the form of an infinite impulse re-

sponse (IIR) filter model for pooling in [3]. Asymmetric and

smooth tracking of time-varying video quality by human sub-

jects was observed and modeled in [4]. Temporal summation

based on recursive formulations was used to model the low pass

nature of the perceived continuous video quality [5] and hystere-

sis effect [6]. The historical experiences of the users’ satisfaction

while consuming a certain video streaming stimulus is modeled

and quantified for web QoE in [7] and for VoIP in [8]. These

models employ support vector machines and iterative exponen-

tial regeression to account for the memory effect. The difference

in successive MOS values is exponentially weighted in a sym-

metric fashion as long as the difference is below a certain thresh-

old. [9] investigates the human perception of variations in layer

encoded video resulting in time-varying quality characteristics.

Recently, the problem of video quality assessment with dynami-

cally varying distortion on mobile devices was studied in [10].

In this work, we attempt to investigate the problem in a more

straightforward way. In particular, we carry out subjective test

on both individual video segments (each with a single scene)

and combined video consisting of multiple segments that have

significantly different quality. The test is designed to study how

subjects (and objective models) react when there are quality vari-

ations between the scenes. We then study different approaches

that use the quality of the individual segments to predict that
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Fig. 1. A schematic example of a three-scene sequence with time-varying quality in the subjective test.

of the combined multi-segment video. This study is different

from previous works, which typically focused on instantaneous

video quality (often measured on a frame-by-frame basis) and

its relationship to the aggregated quality of a video that contains

one scene or multiple scenes. In reality, however, human sub-

jects rarely judge video quality at such a high temporal resolu-

tion. Instead, based on our observation, they would rather give a

single score to a segment of video, often of the same scene (re-

gardless of the instantaneous quality variations between frames

within the scene). Further, subjects tend to maintain their opin-

ions until scene cut occurs, especially when adjacent scenes have

very different content and quality. Eventually, the overall sub-

jective opinion of the multi-scene video would be a result of

pooling the segment-level quality. In this sense, our study better

matches real-world scenarios, where a meaningful video content

(such as a Youtube video) often contains multiple scenes with

different levels of complexity and quality. The data collected

from our subjective experiment allows us to study the quality

predictability between individual video segments and combined

multi-segment video. Our results show that none of the simple

models such as linear averaging and weighted-averaging, non-

linear min- and median-filtering, and distortion-weighted aver-

aging, produces impressive performance. We thus propose an

asymmetric adaptation model to better account for the data. The

model is useful in better understanding the psychological behav-

ior of human subjects in evaluating time-varying video quality.

It can also be directly applied to objective VQA algorithms to

improve their performance, which is demonstrated using peak

signal-to-noise-ratio (PSNR) and the multi-scale structural simi-

larity index (MS-SSIM) [11] as examples.

2. SUBJECTIVE STUDY

2.1. Video Database

We start building our video database by selecting video seg-

ments, each of which contains a single scene, thus in the rest

of the paper, the terms “scene” and “segment” are interchange-

able. Four reference video segments are selected that contain

indoor and outdoor scenes, flat areas and complex patterns,

camera zooming/panning and object motion towards different

directions. The video sequences are progressively scanned, with

high definition (HD) resolution (1280× 800), and in YUV 4:2:0

format. All the videos are five seconds long, with a frame rate

of 30 frames/second. Every raw video scene is compressed at

three quality levels using the recent high efficiency video cod-

ing (HEVC) reference software HM 8.0 [12]. The three quality

levels are obtained by adjusting the quantization parameter (QP)

of the encoder, for which a small-scale initial subjective test was

conducted, such that each scene has three compressed versions at

high-, medium- and low-quality levels (the distribution of quality

levels will be discussed later). In the end, a total of 147 video

sequences are included in the database, which are classified into

three categories:

• 12 single-scene 5-second-long sequences, created by

HEVC compression;

• 27 two-scene 10-second-long sequences, constructed by

concatenating two of the single-scene sequences with

combinations of varying quality;

• 108 three-scene 15-second-long sequences, constructed

by concatenating three single-scene sequences with com-

binations of varying quality.

Figure 1 shows representative frames extracted from a three-

scene test sequence, where the time-varying segment-level qual-

ity are indicated by the variations of the Difference of Mean

Opinion Score (DMOS). A large number of combinations are

included in the 2-scene and 3-scene categories to provide precise

information necessary to study human behaviors in evaluating

time-varying video quality. In addition, single-scene videos are

used as prefixes of two-scene videos. Likewise, two-scene videos

are used as prefixes of three-scene videos. As a result, by simply



asking each subject to score every sequence (1-scene, 2-scene,

or 3-scene), we have the chance to monitor, track, and record the

changes in quality scores along with the subject.

2.2. Subjective Test

Our subjective test generally follows the Absolute Category Rat-

ing (ACR) methodology, as suggested by ITU-T recommenda-

tion P.910 [13]. Although SSCQE [13] is designed for contin-

uously tracking instantaneous video quality over time, it is not

adopted in our experiment for the following reasons. First, as

mentioned earlier, in practice human subjects often opt to judge

video quality on per scene or segment basis, discounting the in-

stantaneous quality variations between frames within a scene.

Second, in our database, the same coding configuration and pa-

rameters are applied to the full duration of each scene, which is

also roughly constant in terms of content and complexity. As a

result, a single quality score is sufficient to summarize its quality.

Third, in SSCQE, there is time delay between the recorded in-

stantaneous quality and the video content, and such delay varies

between subjects and is also a function of slider “stiffness”. This

is an unresolved issue of the general SSCQE methodology, but

is avoided when only a single score is acquired. Fourth, we ob-

serve that humans tend to keep their opinions unless there is a

significant change in video quality that attracts their attention.

This is more realistically matched to real-world scenarios when

subjects are watching a movie or online video. Compared with

SSCQE, ACR is much simpler and provides more reliable and

more realistic quality evaluations in our video database.

Thirty naı̈ve subjects (17 males, 13 females) - all university

undergraduate and graduate students - took part in the 40-minute

subjective test. The first few video sequences were repeated at

the end of the test to measure the fatigue factor. We found out that

there were no bias or significant difference between the scores

obtained, for the same set of video sequences, in the beginning

and at the end of the test. The viewing distance is set to be four

times of the picture height. Instructions were given to the sub-

jects in both written and oral forms. A training session preceded

the test where the subject was shown examples of distorted video

sequences expected in the test. All the reference video sequences

were also shown during the training session. During the main

test, the 147 distorted video sequences were ordered randomly

irrespective of their categories. Subjects scored the quality of

each video sequence according to the eleven-grade 0 − 10 nu-

merical quality scale suggested in ITU-T recommendation P.910

[13].

After screening the data, 4 subjects were discovered to be

outliers as they gave significantly different scores to the same

video sequences when they were randomly repeated, and the

scores given by the remaining 26 subjects were averaged to pro-

duce a mean opinion score (MOS) for each test sequence. Figure

2 plots the MOS scores versus video indices. Thanks to the ini-

tial subjective test before determining the Qp parameters used

to create the compressed videos (as mentioned in Section 2.1),

the resulting MOS values scatter in a wide range of the available

scales [0−10], which allows us to study different cases of quality
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Fig. 2. MOS scores of all video sequences.

transitions between the scenes.

After each test session, we also discussed with each subject,

inquiring about what strategy had been used by the subject to

determine the scores. This step did not affect the data that had

been collected, but helped us understand the data better, and also

provided us with intuitive ideas that could be employed in the

development of computational models that mimic human behav-

iors.

2.3. Observations

By investigating the subjective data collected and discussing with

the subjects regarding their scoring strategies, we have a num-

ber of empirical observations. Although these observations are

only qualitative, they provide useful insights in understanding

the problem and in developing quantitative models that approx-

imate human judgement. These observations are summarized as

follows. Generally speaking, when watching a video with time-

varying quality,

1. Subjects are resistent in updating their opinions. When

there is a small quality variation between consecutive

scenes, subjects tend to keep their opinions or change

their opinions only slightly;

2. Subjects use asymmetric strategies in updating their opin-

ions. A significant quality degradation between consecu-

tive scenes results in a large penalty, as compared to the re-

ward obtained by a similar quality improvement between

consecutive scenes;

3. Subjects prefer consistent quality over time. Maintaining a

“reasonable” quality for longer duration results in a small

bias towards better subjective experience;

4. Subjects’ judgments are not heavily influenced by the

quality of the last (or the first) scene, which is in contrast

to what was reported in [2]. This observation is also re-

flected in the numerical test results reported in Section

3.2.
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Fig. 3. Relationship between change in quality of successive

scenes and change in perceptual quality experience.

3. OBJECTIVE MODEL

3.1. Asymmetric Adaptation (AA) Model

Based on the analysis of the subjective data and the observations

described in Section 2.3, here we propose a model to better ac-

count for the perceptual experience of time-varying video qual-

ity. Assume that when subjects are watching a video, they main-

tain their overall opinions about the video quality until quality

changes in consecutive scenes are observed. We can then focus

on modeling the human strategy in updating their opinions.

Let n be the number of scenes in a video sequence, qi be

the perceptual quality of the i-th scene in the sequence (i.e., the

quality when the single scene is assessed), li be the time span

of the i-th scene, and Qi be the perceptual quality experience

after the i-th scene (i.e., the quality opinion after the first i scenes

are watched). The change in the quality of successive individual

scenes can be calculated by

Δqi =

{
qi, i = 1

qi − qi−1, i = 2, 3 . . . n
. (1)

We model the quality opinion update between watching the (i−
1)-th and the i-th scenes as

Qi =

{
qi, i = 1

αif(Δqi) + (1− αi)Qi−1, i = 2, 3 . . . n
, (2)

where αi = li/
∑i

k=1 lk controls the scale of change that de-

creases as time progresses, and the function f determines how

subjective opinion changes as a function of Δqi. In a simple

special case, when f(x) = x, the model corresponds to qual-

ity averaging over time. However, the observations discussed

in Section 2.3 suggest that f should be nonlinear. In particular,

based on Observation 1 in Section 2.3, f should change slowly

when |Δqi| is small; By Observation 2, f needs to change faster

with negative values of Δqi and slower for positive values of

Δqi; By Observation 3, f should be slightly positive when Δqi is

close to 0. Combining all the desired properties, we use a piece-

wise linear function to approximate f , which is plotted in Figure

3, where the three linear pieces correspond to significantly de-

creasing Δqi, small change of Δqi, and significantly increasing

Δqi, respectively. Because of the asymmetric properties of f ,

we call our quality updating scheme the asymmetric adaptation

(AA) model.

3.2. Validation

We test the proposed AA model by using it to predict the MOS

value of a sequence from the MOS values of individual scenes

that compose the sequence. All the MOS values are available in

the subjective database described in Section 2. In addition to the

proposed AA model, a series of other predictive models are also

included for comparison. These include the Mean, Min, Max,

and Median MOS values of all scenes, the MOS value of the

first scene (FS) and the last scene (LS), weighted average MOS

with increasing weights (W+), where w = [ 16
2
6

3
6 ] for 3 scenes;

decreasing weights (W-), where w = [ 36
2
6

1
6 ], and distortion-

based weights (DW), where w = 1/MOS. Correlation between

the predicted and actual sequence-level MOS scores is then cal-

culated to provide quantitative evaluation of the performance.

The results are reported in Table 1, where due to space limit,

only Kendall’s rank-order correlation coefficient (KRCC) results

are given, but other measures give similar results. Furthermore,

Figs. 4(d) and 4(g), and Figs. 4(j) and 4(m) compare the scatter

plots of the actual MOS values versus Mean- and AA-predicted

MOS values for 2-scene and 3-scene sequences, respectively. It

can be observed that AA provides better predictions then Mean-

MOS, which is one of the best in Table 1 among all other pooling

methods being compared.

If a pooling scheme is effective at predicting sequence-level

quality using the quality of each segment, then it should also be

useful in improving objective VQA models in the pooling stage.

We use the well-known PSNR and MS-SSIM [11] as examples to

verify this. Note that the purpose here is not to find the best ob-

jective VQA approach, but to demonstrate the usefulness of the

proposed model. The PSNR and MS-SSIM values are computed

for each frame and then averaged within each scene, resulting

the scene-level PSNR and MS-SSIM measures, which are used

as the basis to predict the sequence-level MOS. The quantitative

results are shown in Table 1 and the corresponding scatter plots

for Mean- and AA-prediction are given in Fig. 4. It can be seen

that the pooling schemes being tested generally behave consis-

tently when using MOS, PSNR and MS-SSIM as the basis for

scene-level quality measurement, and the proposed AA model

generally outperforms the other approaches.

4. CONCLUSION

The major contributions of this work are twofold. First, we cre-

ated a video database and carried out subjective test that are de-

signed to directly examine the perceptual experience of time-

varying video quality. The database, together with the subjec-
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Fig. 4. Scatter plots of sequence-level actual MOS (vertical axis) versus predicted MOS (horizontal axis) using different scene-

level base quality measures and different pooling strategies. Column 1: predicted by scene-level MOS; Column 2: predicted by

scene-level PSNR; Column 3: predicted by scene-level MS-SSIM. Row 1: 1-scene sequence; Rows 2 and 3: 2-scene sequence;

Rows 4 and 5: 3-scene sequence; Rows 2 and 4: Mean prediction; Rows 3 and 5: AA prediction.



Table 1. KRCC Comparison between actual MOS and predicted MOS using different base quality measures (scene-level MOS,

PSNR and MS-SSIM) and different pooling strategies (Mean, Min, Max, Median, FS, LS, W+, W-, DW and AA).

Base measure MOS PSNR MS-SSIM

Sequence type 1-scene 2-scene 3-scene 1-scene 2-scene 3-scene 1-scene 2-scene 3-scene

Mean 1.0000 0.8388 0.7939 0.6061 0.6163 0.5203 0.7273 0.7346 0.7151

Min 1.0000 0.7274 0.6245 0.6061 0.5722 0.4752 0.7273 0.6477 0.5214

Max 1.0000 0.6546 0.4973 0.6061 0.5477 0.4468 0.7273 0.5928 0.4639

Median 1.0000 0.8388 0.7033 0.6061 0.6163 0.6133 0.7273 0.7346 0.6601

FS 1.0000 0.5553 0.3574 0.6061 0.4365 0.3156 0.7273 0.5078 0.3452

LS 1.0000 0.5292 0.4390 0.6061 0.4763 0.3828 0.7273 0.5075 0.4113

W+ 1.0000 0.7475 0.7299 0.6061 0.6562 0.5288 0.7273 0.6733 0.6657

W- 1.0000 0.8103 0.6553 0.6061 0.5307 0.4784 0.7273 0.7247 0.6136

DW 1.0000 0.8445 0.7808 0.6061 0.6220 0.5380 0.7273 0.7232 0.7133

AA 1.0000 0.8902 0.8447 0.6061 0.6676 0.5660 0.7273 0.7703 0.7517

tive data, will be made available to the public. Second, we have

a number of useful observations from the subjective test, based

on which we proposed an asymmetric adaptation (AA) model to

mimic the human strategies in updating quality opinions when

watching video with time-varying quality. The proposed AA

model was found to be effective in predicting sequence-level

MOS values using scene-level MOS scores. It also leads to im-

proved quality prediction performance when adopted in the pool-

ing stages of objective VQA methods. The results of the cur-

rent study may help us better understand perceptual experience

of time-varying video quality in more realistic scenarios. They

also have the potentials to be employed in the optimization of

modern video compression technologies and in the optimal al-

location of network resources for improving the visual QoE of

end-users.
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