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Abstract

The fractal image compression technique models a natural image using a contractive mapping called fractal mapping
in the image space. In this paper, we demonstrate that the fractal image coding algorithm is compatible with other image
coding methods. In other words, we can encode only part of the image using fractal technique and model the remaining
part using other algorithms. According to such an idea, a new mapping in the image space called partial fractal mapping
is proposed. Furthermore, a general framework of fractal-based hybrid image coding encoding/decoding systems is
presented. The framework provides us with much #exibility for real implementations. Many di!erent hybrid image
coding schemes can be derived from it. Finally, a new hybrid image coding scheme is proposed where non-fractal coded
regions are used to help the encoding of fractal coded regions. Experiments show that the proposed system performs
better than the quadtree-based fractal image coding algorithm and the JPEG image compression standard at high
compression ratios larger than 30. ( 2000 Elsevier Science B.V. All rights reserved.
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RM the M-dimensional Cartesian product of
the real numbers
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metric of two elements in RM

X the set of sample point indexes in a signal
W basic fractal mapping
=P partial fractal mapping

1. Introduction

The concept of fractal was introduced by Man-
delbrot [8] as an alternative to the traditional

*Corresponding author.

Euclidean geometry mainly for dealing with shapes
generated by nature. In recent years, the interest of
applying this theory has been steadily growing.
A recent trend in computer graphics and image
processing has been to use iterated function system
(IFS) to generate and describe both man-made frac-
tal-like structures and natural images. Barnsley
et al. were the "rst to present the concept of fractal
image compression using IFS [1]. A fully auto-
matic image compression algorithm for real-world
gray scale images called fractal block coding (FBC)
was proposed by Jacquin [4,5]. Jacquin's algorithm
has been studied, re"ned and improved in recent
years, many important research results on this
topic are collected in Fisher's book [3]. As Jacquin
indicated in [5], the main point of FBC is that it
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can capture and exploit a special kind of image
redundancy } piecewise self-similarity in images,
which is not used by traditional image coding tech-
niques. Since natural images are not exactly
self-similar, the image will be formed of properly
transformed &parts' of itself [3]. The fractal code of
the image is actually the collection of these trans-
formations, which are called fractal transforma-
tions. Usually, fractal transformations can be
represented by fewer bits than the original image,
so a fractal code is a compression of the original
image, sometimes with very high compression
ratios.

Nevertheless, fractal representations are not al-
ways very e$cient for image compression. For
example, the fractal compression method usually
needs much more bits to encode very &#at' regions
than other simpler methods. Taking advantage of
the powerful compression ability of fractal coding
while at the same time avoiding its ine$ciency for
some kinds of regions seems contradictory. A way
to solve this problem is to develop a hybrid system
where only some parts of the image are encoded
using fractal techniques and the remaining parts
are modeled using other methods, so that the
merits of di!erent approaches can be combined and
the overall coding e$ciency is improved. There have
been some examples for such kind of hybrid sys-
tems. In Jacquin's primary work [4,5], he used only
dc components to encode shade blocks (smooth
with no signi"cant gradient). "ien et al. reported
that it might be advantageous to encode the com-
plex regions (sharp edges and textures) of an image
with FBC and smooth regions with a block-DCT
encoder [5]. Laurencot and Jacquin compared
FBC with LBG [7] based VQ scheme. Their results
appeared that for sharp-edge blocks, FBC performs
better than VQ, but the results are very similar for
texture blocks, with perhaps a slight advantage for
VQ coding of texture block [5,6].

It should be noted that all of the above-
mentioned hybrid systems assume that the fractal
image coding algorithm is compatible with other
methods. However, no explanation on the compati-
bility had been given. Since in fractal block coding,
the encoding of every block is highly related with
other blocks in the image, if only a proportion of
the blocks are coded using fractal method, could

the remaining non-fractal-coded blocks destroy the
whole fractal code?

In this paper, by introducing the concept of par-
tial fractal mapping, we provide some mathemat-
ical explanations on how and why a hybrid fractal
image coding system can work. A general frame-
work of the hybrid system is then proposed. Ac-
cording to such a framework, many di!erent hybrid
image coding schemes can be derived. Actually, all
the above-mentioned hybrid systems are only some
special cases of it. The framework also gives us
something that is new to those previously proposed
algorithms: 1. Non-fractal-coded regions can be
used to help the encoding of the fractal-coded re-
gions to improve the overall coding e$ciency; 2.
Non-fractal-coded regions can be encoded using
not only block-based but also non-block-based al-
gorithms; 3. The domain pool used by the fractal-
coded blocks can be reduced. Finally, we provide
an example of the new hybrid system and give some
experimental results.

2. Basic fractal mapping

A digital signal / with M sample points can be
viewed as an element in RM, where RM denotes the
M-dimensional Cartesian product of the real num-
bers. Let X"M1, 2, 2, MN represent the set of
sample point indexes in the signal. We can denote
/3RM and /"(/(1), /(2), 2, /(M))T. In this pa-
per, the signal / refers to an image and RM refers to
the image space that is the collection of all possible
images. When we use sub-indexes on / such as
/
1

and /
n
, we mean they are di!erent images. For

convenience, one-dimensional model is used in this
paper. Nevertheless, the discussions and theorems
presented below are also applicable or can be easily
adapted to two-dimensional or higher-dimensional
cases.

InRM, we de"ne the following two kinds of metrics:
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Then we have two complete metric spaces of
(RM, d

.!9
) and (RM, d

2
). It is easy to prove
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(/

1
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))d

.!9
(/

1
, /

2
). (3)

The image is partitioned into N non-overlapping
sub-pieces R

i
LX (i"1, 2, 2, N). In the fractal

image coding literature, R
i
is also called a range

block. Let r
i
be the number of pixels in R

i
(M"

+N
i/1

r
i
), then we have

X"

N
Z
i/1

R
i

and R
i
WR

j
"H (iOj). (4)

Each R
i
corresponds to a transformation=

i
, which

transforms another sub-piece in the image D
i
LX

to the position of R
i
, where D

i
is also called a do-

main block and we use d
i
to represent the number

of pixels in D
i
.=

i
is a combination of the extracting

transformation E
i
, the geometrical transformation

G
i
, the luminance transformation ¸

i
and the

putting transformation P
i
. They are illustrated as

follows:
f E

i
: RMPRdi is to extract the domain block

D
i
from the image.

f G
i
: RdiPRri includes the action of spatial con-

traction and rotation, that maps block of size
D

i
to block of size R

i
and rotate it in some way.

Usually d
i
is a multiple of r

i
, so that every pixel

j in R
i
corresponds to K pixels j

1
, j

2
, 2, j

K
in D

i
.

The pixel value of j is determined by the weighted
average of corresponding pixel values in D

i
,

that is,

z
R
( j)"

K
+
k/1

a
jk
) z

D
( j

k
), (5)

where z
R

and z
D

are the gray values in R
i
and D

i
,

respectively. (a
j1
, a

j2
, 2, a

jK
) is the weight vector

that satis"es +K
k/1

a
jk
"1.

f ¸
i
: RriPRri is a luminance transformation

which modi"es each pixel one by one using
a uniform one-dimensional gray value mapping

l
i
: RPRzPl

i
(z). If

& 0)s(1, ∀i3[1, N], ∀z
1
, z
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Dl
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(z

2
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2
D, (6)

then l
i

is a one-dimensional contractive map-
ping.

f P
i
: RriPRM is to put the processed image

block back into the image at the position of
R

i
and set the remaining part of the image to be

all zero.
By applying the transformations in order of E

i
, G

i
,

¸
i
and P

i
, we can achieve the combined transforma-

tion of

=
i
: RMPRM, =

i
(/)"P

i
¸
i
G

i
E
i
(/). (7)

The collection of all =
i

is called an iterated
function system: IFS"M=

1
,=

2
, 2,=

N
N. The

function of IFS can also be viewed as an overall
fractal mapping W on the image, which is the sum
of all =

i
:

= : RMPRM, =(/)"
N
+
i/1

=
i
(/). (8)

If all l
i
's are contractive, it can be proved that W is

a contractive mapping in (RM, d
.!9

), that is,
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(/
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where 0)s(1 is called the contractive factor of
W. According to the Contraction Mapping The-
orem in complete metric space, W has the following
properties.

Property 1. There exists a unique attractor image
/3RM, such that

=(/)"/. (10)

Property 2. Iteratively, apply W to any initial image
/(0) in RM, the attractor image can be eventually
obtained:

∀/(0)3RM, lim
n?=

=3n(/(0))"/, (11)

where
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Property 3. The collage theorem: ∀t3RM, if for
e'0, we have d

.!9
(=(t), t))e, then

d
.!9

(/, t))
e

1!s
. (12)

These three properties are the bases of fractal
image coding algorithms. If we have an image t to
be encoded, then the encoding is to "nd a fractal
mapping W, which makes the error between=(t)
and t as small as possible. When decoding, W
is applied iteratively to an arbitrary initial image
/(0), then we obtain an image sequence /(0),
/(1), 2, /(n), 2 and the attractor image / is
eventually achieved, which is our reconstructed im-
age. According to the collage theorem, the di!er-
ence between / and t can be controlled by the
error between=(t) and t. In practice, even if some
of the l

i
's are non-contractive, the iteration proced-

ure can still converge to an attractor image. Al-
though such kind of convergence is very di$cult to
be mathematically proved, the usage of non-con-
tractive l

i
has been widely adopted by many fractal

image coding systems. More discussions are given
by Fisher in [2].

3. Partial fractal mapping

If only part of the image is coded using fractal
method, then Eq. (4) should be modi"ed. First,
we partition the whole image X into two parts
X

1
and X

2
,

X"X
1
XX

2
and X

1
WX

2
"H, (13)

where only X
1
part is modeled using fractal method

and X
2

part is encoded using any other method.
X

1
can be further partitioned,

X
1
"

N1

Z
i/1

R
i

and R
i
WR

j
"H (iOj). (14)

Under such a partitioning, we have +N1
i/1

r
i
(M.

Obviously, M!+N1
i/1

r
i
is the number of pixels in

X
2
.
For the non-fractal coded part X

2
, we use a con-

stant function mapping C : RMPRM, so that
∀/3RM, we always have C(/)"h, where h is

a constant vector in RM and satis"es ∀j3X
1
,

h( j)"0.
For the fractal coded part X

1
, the process is

similar to that in Section 2.1 for basic fractal encod-
ing. For each R

i
, we "nd the appropriate=

i
and D

i
.

As to a certain R
i
, its corresponding D

i
may in

X
1

or in X
2
, or part of it in X

1
, and the remaining

part in X
2
.

We call the collection of =
i

(i"1, 2 , N
1
)

a partial iterated function system: IFSP"

M=
1
,=

2
, 2 ,=

N1
N. The combination of IFSP and

the constant mapping C compose a partial fractal
mapping,
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=
i
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=
i
(/). (15)

Now, we discuss the properties of =P.

Theorem 1. =P is a contractive mapping in
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.!9
).
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if j3X
2
, then
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i.e.,
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According to Theorem 1 and the Contractive
Mapping Theorem in complete metric space, we
can prove that in (RM, d

.!9
) space,=P satis"es the

three properties of W described in Section 2.1.
In real applications, we are more concerned with

the d
2

metric. However, in (RM, d
2
), it is di$cult to

prove the contractivity of either W or =P, but we
have the following theorems.

Theorem 2. There are a basic fractal mapping W
and a partial fractal mapping =P in (RM, d

2
)

space, where the IFSP of =P is a subset of the IFS
of W (i.e., the encoding of X

1
part of =P is exactly

the same as the corresponding part of W). If W is
a contractive mapping, then=P is also a contractive
mapping.
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Theorem 2 demonstrates that=P is more likely
to be contractive than W in (RM, d

2
) space.

Theorem 3. In (RM, d
2
) space, =P has a unique

attractor image /, such that =P(/)"/

Proof. (Existence.) From the properties of =P in
(RM, d

.!9
) space, we know that there exists a /3RM

that makes d
.!9

(=P(/), /)"0, then we have

d
2
(=P(/), /)

(3)
) d

.!9
(=P(/), /)"0. (21)

Therefore in ( RM, d
2
) space,=P(/)"/.

That is to say,=P has the same attractor image
/ in both ( RM, d

.!9
) and (RM, d

2
).

(Uniqueness.) If there exist two di!erent attrac-
tors /
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, /

2
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Obviously, ∀j3X, D(=P/
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1
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Therefore /
1

is an attractor of =P in (RM, d
.!9

)
space.

For the same reason, /
2

is also an attractor in
(RM, d

.!9
) space.

But we have assumed /
1
O/

2
. This is contradic-

tory to the theorem that the attractor of=P in (RM,
d
.!9

) space is unique. h

Theorem 4. If / is the attractor of =P in (RM, d
2
)

space, then

∀/(0)3RM, lim
n?=

(=P)3n(/(0))"/. (25)
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Fig. 1. A general framework of the hybrid image encoding/decoding systems.

Proof. According to Property 2 of=P in (RM, d
.!9

)
space,

∀e'0, &N, ∀n'N, d
.!9

((=P)3n(/(0)), /)(e (26)

so, d
2
((=P)3n(/(0)), /)

(3)
) d

.!9
((=P)3n(/(0)), /)(e,

(27)
therefore

lim
n?=

(=P)3n(/(0))"/. h (28)

Theorems 3 and 4 prove that =P still satis"es
Properties 1 and 2 in (RM, d

2
) space. The di!erence

from those in (RM, d
.!9

) space is that we cannot
prove the collage theorem (Property 3). However,
the error between the original image and the recon-
structed image still can be controlled: ∀t3RM, if
&e'0, such that d

.!9
(=P(t), t))e, then we have

d
2
(/, t)

(3)
) d

.!9
(/, t))

e
1!s

. (29)

4. A general framework for hybrid fractal-based
image coding systems

According to the construction and properties
of =P, we get a general hybrid fractal image

coding framework which is shown in Fig. 1.
First, an image partitioning algorithm segment the
whole image into two parts X

1
and X

2
. X

2
is en-

coded using some other techniques. Its decoding
result is the item of h in Eq. (15). The X

1
part is

encoded using fractal method. The output codes
include the fractal code of X

1
(a), the code of

X
2

part (b) and the segmentation information code
(c). When decoding, the segmentation information
is "rst decoded, then we decode X

2
and get h.

Finally, the fractal code is iteratively applied to
reconstruct part X

1
and we achieve our reconstruc-

ted image.
The framework of Fig. 1 provides us with much
#exibility for real implementation. The #exibility
exists in almost every section of the encoding
side:
1. The image partitioning algorithm.
2. The encoding of the image partitioning informa-

tion. Obviously, this information must be en-
coded using lossless methods.

3. The encoding of the non-fractal-coded region
X

2
. Not just block-based methods can be used as

those in previous hybrid image coding systems.
Actually, almost any image coding techniques
can be chosen.
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4. The fractal image coding of X
1
, which includes

the selection of parameters, domain pool and the
searching procedure, etc.

5. Sometimes the decoding result of X
2
can be used

to predict some fractal parameters for the encod-
ing of X

1
, so that the coding e$ciency of X

1
can

be improved. We show this in Fig. 1 using the
dashed lines.

Apparently, many di!erent hybrid image coding
schemes can be derived from the general framework
shown in Fig. 1. Examples include those published
in [4,6,7]. In the next section, we give another
example which shows more merits of our hybrid
method.

5. A hybrid image coding system

The image to be encoded is partitioned into
non-overlapping equal-sized blocks. Each block
is categorized into one of the following four
classes:
1. A large smooth region which is composed of at

least two of the connected adjacent blocks and
can be approximated su$ciently well by a uni-
formly gray region.

2. A large smooth region which is composed of at
least two of the connected adjacent blocks and
can be su$ciently approximated by a plane (i.e.,
linear approximation).

3. An isolatedly coded block simply approximated
by a uniformly gray block.

4. An isolatedly coded block modeled by fractal-
based method.

Two bits are needed for each block to catalogue it
into one of the four classes. We use a lossless
adaptive arithmetic coding algorithm presented in
[12] to further compress this information.

5.1. Image partitioning

First, a Sobel operator (refer to [13]) is applied to
the original image and we obtain an edge image. An
example of the edge image of &Lena' is shown in
Fig. 2. Second, the edge image is partitioned into
non-overlapping equal-sized 8]8 blocks. An 8]8
block may have many edge pixels or only a few or
no edge pixels. A threshold ¹

S
of the number of

Fig. 2. Edge image of &Lena'.

edge pixels is used to determine whether the block
is smooth or complex. Next, we use a region grow-
ing algorithm to merge adjacent smooth blocks (A
block's top, right, bottom and left blocks are called
its adjacent blocks). The region growing is an iter-
ative procedure. We "rst select a smooth block
from the image. If any of its four adjacent blocks is
also smooth, then the middle block and the adjac-
ent blocks are merged into a smooth region and the
merged adjacent block becomes a new selected
smooth block. The same merging process is applied
to each of the new selected smooth blocks. The
iteration continues so that the merged region grows
as much as possible with at least two or sometimes
hundreds of complete 8]8 blocks. For the ease of
encoding, we restrict each merged region to be
within a local 64]64 block region. An example of
image partitioning and merging result for the stan-
dard image &Lena' is shown in Fig. 3.

Except for the large smooth regions, the remain-
ing parts of the image are all isolated blocks which
will be encoded using block-based algorithms.
These blocks are likely to be complex, but some of
them may be smooth because a smooth block with
no adjacent smooth block cannot be merged into
a large smooth region.
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Fig. 3. An example of image partitioning and merging result for
&Lena' 512]512.

5.2. Approximation of merged smooth regions

For each merged smooth region, we "rst simply
try to approximate it by a uniformly gray
region with gray level equal to its mean value m.
If the resulting MSE is less than a threshold
¹

E1
, the dc component of the region is quan-

tized and stored. Otherwise, we use a plane to
approximate it. Plane approximation means to
use a linear equation z("ax#by#c to model
the region. The optimal parameters can be easily
obtained under the condition of minimum
squared error between the approximation plane
and the original region. We can also easily
prove that

c"m!ax6 !by6 , (30)

where m is the mean value (dc component) of the
region, x6 and y6 are the averages of x and y within
the region, respectively. Then the plane equation

can be rewritten as

z("ax#by#c"a(x!x6 )#b(y!y6 )#m. (31)

We encode a, b and m to represent the plane.

5.3. Prediction of dc components of isolated blocks

The dc component of an isolated block is cor-
relative with its neighborhood regions. We use the
average of the dc components of its eight surround-
ing blocks as a prediction of the dc component of
the surrounded block. If all isolated blocks have all
of their surrounding blocks in merged smooth re-
gions, the prediction is simple. However, an iso-
lated block may have less than eight surrounding
blocks in merged smooth regions, thus its dc com-
ponent cannot be directly predicted. We use a pro-
gressive procedure to solve this problem. In the
initial image, the merged smooth regions are
covered using the approximation method described
in Section 5.2 and the isolated blocks are left un-
covered. The procedure consists of several steps.
The output of each step is used as the input of the
next step. In Step 1, for each isolated block, if all of
its eight surrounding blocks have been covered, we
compute the average of the dc components of these
eight blocks as a prediction of its dc component.
The di!erence between the real dc component and
the predicted dc component is stored. Then the
block is covered with a uniformly gray value equal
to its real dc component. Steps 2,3,4, ... are the same
as Step 1 except that the uncovered blocks are
allowed to be covered if they have 7, 6, 5, ... instead
of eight surrounding blocks covered. This proced-
ure continues until all isolated blocks have been
covered.

Normally, the di!erence between the real dc
component and the predicted dc component is
a value near zero. This kind of distribution allows
us to code dc components more e$ciently. If the
absolute value of the di!erence between the real
and predicted dc components is less than 16, we use
5 bits to code the di!erence. Otherwise, we use
8 bits to directly encode the real dc component.
One extra bit is used to make a classi"cation. If
p represents the proportion of the 5 bits coded dc
components in all dc components, then the average
number of bits needed to code a dc component is
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5p#8(1!p)#1"9!3p. Since the dc compo-
nents are useful for the encoding of isolated blocks
including fractal-coded blocks, this prediction pro-
cedure can be viewed as a way where non-fractal-
coded regions are used to help the encoding of
fractal-coded regions.

5.4. Encoding of isolated blocks

For each isolated block, we also "rst simply try
to approximate it by a uniformly gray block with
gray level equal to its dc component. If the resulting
MSE is less than a threshold ¹

E2
, we do not need

any extra bit to code it because its dc component
has been predicted and quantized using the method
described in Section 5.3. Otherwise, we encode it
using a modi"ed fractal block coding (FBC)
method called fractal block coding in residue do-
main (FBCRD). A detailed description of FBCRD
is presented in [11]. FBCRD is, in some ways,
similar to a fractal image coding algorithm pro-
posed by "ien and Leps+y [9]. Both of them
can get faster decoding than basic FBC and
store the scaling factor and the dc component in-
stead of the scaling factor and the o!set for
luminance transformations. This is bene"cial
with respect to encoding. FBCRD also has some-
thing di!erent from "ien and Leps+y's algorithm.
When decoding, the dc component of the domain
block is dynamically computed and is variable in
each iteration, while in "ien and Leps+y's algo-
rithm, it is a "xed value. This di!erence frees
FBCRD from several constraints on "ien and
Leps+y's algorithm:
1. There is no constraint on the image partitioning

method.
2. It is not necessary for the domain block to be

made up of an integer number of complete range
blocks.

3. More important for our usage, FBCRD can
be applied in a hybrid system where only part
of the image is fractal-coded. In this kind of
systems, since a domain block may cover
some non-fractal coded regions, the dc com-
ponent of the block can only be computed
dynamically.
In our hybrid system, all fractal-coded blocks are

complex blocks, thus more likely to be approxi-

mated by complex domain blocks. This allows us to
exclude smooth domain blocks from the domain
pool. If a domain block does not contain any pixel
of any fractal-coded block, we regard it as a smooth
domain block and exclude it from the domain pool.
The reduction of domain pool leads to two im-
provements with respect to encoding. First, smaller
domain pool means less encoding time. Second,
smaller domain pool allows us to use fewer bits to
encode the position shift for the geometrical trans-
formations.

5.5. Decoding and postprocessing

At the decoder, the block classi"cation informa-
tion is the "rst to be decoded. Then large smooth
regions are merged and covered using dc or linear
approximation method. A progressive procedure
corresponding to that in the encoder is applied to
decode the dc components of isolated blocks and
cover them with uniformly gray blocks. The result
of this progressive procedure is our initial image for
fractal decoder iterations. Then FBCRD-based de-
coding procedure is iteratively applied and more
detailed information in fractal coded blocks is
gradually emerged through iterations. The iter-
ation is terminated when we achieve a satisfactory
image. In each fractal decoder iteration, non-frac-
tal-coded regions are kept unchanged.

To reduce the discontinuities at the block and
region boundaries, we use a simple smooth algo-
rithm similar to that introduced by Fisher in [2] to
minimize these artifacts. That is, if the pixel values
on either side of a boundary are u and v, then they
are replaced by 3

4
u#1

4
v and 1

4
u#3

4
v, respectively.

This algorithm is applied only to boundary pixels
of large smooth regions and isolated blocks. The
internal pixels of either large regions or isolated
blocks are kept unaltered.

6. Simulations and conclusions

We use some 8 bits/pixel gray scale images to test
our hybrid system. Peak signal-to-noise ratio
(PSNR) is used to make an objective evaluation. In
our hybrid system, each 8]8 block needs 2 bits to
be classi"ed into one of four classes. Usually, this
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classi"cation information can be compressed by
25}40% by using adaptive arithmetic coding algo-
rithm [12]. We use 8 bits to code the dc component
for a dc approximated large smooth region and
8 bits to code each of the 3 parameters for a linear
approximated merged smooth region. For isolated
blocks, the proportion p is typically around 0.65, so
9!3p+7 is the average number of bits for a dc
component. For a fractal-coded block, we use 6 bits
to code scaling factor and 3 bits to code symmetry.
Since the domain pool is condensed, the bits needed
for the position of domain block is reduced from 10
to 9 bits. Averagely, a total of about 25 bits are
needed for each fractal-coded block including the
bits for its dc component.

The selection of the three threshold parameters
¹

S
, ¹

E1
and ¹

E2
can be used to control the tradeo!

between high compression ratio and good image
quality. If ¹

S
is higher, more blocks will be

regarded as smooth, thus we will obtain higher
compression ratio but lose more image details. Sim-
ilarly, if ¹

E1
and ¹

E2
are higher, more blocks or

regions will be simply represented using a uniform-
ly gray region and the compression will be higher,
but approximation becomes less e$cient. Fig. 4
shows PSNR versus compression ratios and com-
pares our hybrid system with Fisher's quadtree
fractal block coding method [2] and the JPEG still
image coding standard [10]. It appears that our
hybrid system performs better than the fully frac-
tal-coded quadtree method in a wide range of com-
pression ratios. JPEG is better at low compression
ratios, but the hybrid system outperforms JPEG at
high compression ratios larger than 30. Figs. 5 and
6 show the decoded images of &Lena' and &Peppers'
by our hybrid system, the quadtree method and the
JPEG standard at similar compression ratios. In
the hybrid system, the threshold parameters are set
to ¹

S
"0, ¹

E1
"32 and ¹

E2
"64, respectively. In

Fig. 7, some enlarged areas of the decoded images
by the hybrid system and the quadtree method are
provided, where the areas are extracted from Fig. 5.
Our hybrid system appears to show major im-
provements with respect to the subjective quality of
the reconstructed images.

Another bene"t from our hybrid system is the
save of encoding and decoding computation time.
The reason is manifold. First, the number of fractal

Fig. 4. A comparison of compression results for image &Lena'
512]512.

coded blocks is reduced compared with fully fractal
block coding algorithm, while the encoding of
other regions is much faster. Second, the domain
pool for fractal block coding is reduced. Since most
of the encoding time of fractal image compression
systems is used in searching for suitable domain
blocks in the domain pool, smaller domain pool
means less encoding time. Third, smaller domain
pool allows us to use fewer bits to code the position
shift for the geometrical transformations. Experi-
mentally, only 20}60% the encoding time of the
fully fractal block coding algorithm is needed.
Finally, the number of decoder iterations is less
than the fully fractal coding algorithm due to the
good convergence property of FBCRD.

In this paper, we propose the concept of partial
fractal mapping and introduce a general framework
for a class of fractal-based hybrid image coding
systems. In addition, a real hybrid system is pre-
sented where non-fractal-coded regions are used to
help the encoding of fractal-coded regions. Experi-
ments show that our hybrid system outperforms
the JPEG image compression standard at high
compression ratios. We believe that under our gen-
eral framework, the compression result can be fur-
ther improved by combining fractal technique with
other more sophisticated methods.
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Fig. 5. Original and decoded &Lena' images. Upper-left: Original image; Upper-right: Quadtree decoded image, Compression ra-
tio"35.6, PSNR"28.6 dB; Lower-left: JPEG decoded image, Compression ratio"36.6, PSNR"29.5 dB; Lower-right: Decoded
image by the hybrid system, Compression ratio"37.9, PSNR"30.4 dB.
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Fig. 6. Original and decoded &Peppers' images. Upper-left: Original image; Upper-right: Quadtree decoded image, Compression
ratio"34.3, PSNR"28.7 dB; Lower-left: JPEG decoded image, Compression ratio"34.0, PSNR"29.7 dB; Lower-right: Decoded
image by the hybrid system, Compression ratio"35.0, PSNR"30.5 dB.
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Fig. 7. Enlarged areas of &Lena' image. Left: decoded image areas by the hybrid system; Right: quadtree decoded image areas.
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