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ABSTRACT 
 
The human visual system (HVS) is highly non-uniform in sampling, coding, processing and understanding. The spatial 
resolution of the HVS is highest around the point of fixation (foveation point) and decreases rapidly with increasing 
eccentricity. Currently, most image quality measurement methods are designed for uniform resolution images. These 
methods do not correlate well with the perceived foveated image quality. Wavelet analysis delivers a convenient way to 
simultaneously examine localized spatial as well as frequency information. We developed a new image quality metric 
called foveated wavelet image quality index (FWQI) in the wavelet transform domain. FWQI considers multiple factors 
of the HVS, including the space variance of the contrast sensitivity function, the spatial variance of the local visual cut-
off frequency, the variance of human visual sensitivity in different wavelet subbands, and the influence of the viewing 
distance on the display resolution and the HVS features. FWQI can be employed for foveated region of interest (ROI) 
image coding and quality enhancement. We show its effectiveness by using it as a guide for optimal bit assignment of an 
embedded foveated image coding system. The coding system demonstrates very good coding performance and 
scalability in terms of foveated objective as well as subjective quality measurement. 
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1.   INTRODUCTION 
 
The photoreceptors (cones and rods) and ganglion cells are non-uniformly distributed in the retina in the human eye [1]. 
The density of cone receptors and ganglion cells plays important role in determining the ability of our eyes to resolve 
what we see. Spatially, the visual resolution is highest around the point of fixation (foveation point) and decreases 
rapidly as a function of eccentricity. Consequently, the human visual system (HVS) is highly spatial-variant in sampling, 
coding, processing and understanding visual information. The motivation behind foveation image processing is that there 
exists considerable high frequency information redundancy in the peripheral regions, thus a much more efficient 
representation of images can be obtained by removing or reducing such information redundancy, provided the foveation 
point(s) and the viewing distance can be discovered. There has been growing recent interest in research work on foveated 
image processing [2-5], including foveation filtering and foveated image and video compression. 
 
Currently, most image quality measurement methods are designed for uniform resolution images. However, little has 
been done in the assessment of non-uniform resolution images. For example, peak signal-to-noise ratio is still used for 
region of interest (ROI) image coding and postprocessing [6, 7]. Quality assessment method is very important for 
foveated image coding, because image coding is essentially an optimization procedure that attempts to maximize image 
quality with a limited number of bits, where the quality metric servers as a guide for bit assignment. Quality metrics are 
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also very useful for the design of quality enhancement algorithms for the preprocessing and postprocessing of images. 
Wavelet analysis delivers a convenient way to simultaneously examine localized spatial as well as frequency 
information. In this paper, we present a foveation-based HVS image quality metric, namely foveated wavelet image 
quality index (FWQI), in the discrete wavelet transform (DWT) domain.  

 
2.   FOVEATED VISUAL SENSITIVITY MODEL 

 
Let us first examine the anatomy of the early vision system. The light first passes through the optics of the eye and is 
then sampled by the photoreceptors on the retina. There are two kinds of photoreceptors – cones and rods. The cone 
receptors are responsible for daylight vision. Their distribution is highly non-uniform on the retina. The density of the 
cone cells is highest at the fovea and drops very fast with increasing eccentricity. The photoreceptors deliver data to the 
bipolar cells, which in turn supply information to the ganglion cells. The distribution of ganglion cells is also highly non-
uniform. The density of the ganglion cells drops even faster than the density of the cone receptors. These density 
distributions play important roles in determining the resolution ability of the human eye. Psychological experiments had 
been conducted to measure the contrast sensitivity as a function of retinal eccentricity [2, 8-9]. In [2], a model that fits 
the experimental data was given as 
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where f is the spatial frequency (cycles/degree), e is the retinal eccentricity (degrees), CT0 is a constant minimal contrast 
threshold, α is the spatial frequency decay constant, e2 is the half-resolution eccentricity, and CT(f, e) is the visible 
contrast threshold as a function of f and e. The best fitting parameter values given in [2] are α = 0.106, e2 = 2.3, and CT0 
= 1/64. It was also reported in [2] that the same values of a and e2 provide a good fit to the data in [8] with CT0 = 1/75, 
and an adequate fit to the data in [9] with CT0 = 1/76, respectively. We use the parameter selections as in [2]. The 
contrast sensitivity is defined as:  
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For a given e, equation (1) can be used to find its critical frequency or so called cut-off frequency fc by setting CT to 1.0 
(the maximum possible contrast) and solving for e 
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Assume that the observed image is N pixels wide and the line from the fovea to the point of fixation in the image is 
perpendicular to the image plane. Also assume that the position of the foveation point Tff xx ),( 21=fx  (pixels) and the 

viewing distance v (measured in image width) from the eye to the image plane are known. The distance u (measured in 

image width) from point Txx ),( 21=x  to xf is then u = d(x)/N, where d(x) = � x – xf � 2 =  2
22
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Fig. 1 shows the normalized contrast sensitivity as a function of pixel position for N = 512 and v = 1, 3, 6 and 10, 
respectively. The cut-off frequency as a function of pixel position is also given. The contrast sensitivity is normalized so 
that the highest value is always 1.0 at 0 eccentricity. It can be observed that the cut-off frequency drops quickly with 
increasing eccentricity and the contrast sensitivity decreases even faster. In real world digital images, the maximum 
perceived resolution is also limited by the display resolution r: 
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Fig. 1  Normalized contrast sensitivity (Brightness indicates the strength of contrast sensitivity). The top-left, top-right, 

bottom-left and bottom-right figures are for N = 512 and viewing distance v = 1, 3, 6 and 10 times of the image 
width, respectively. The white curves show the cutoff frequency. 

 
 

180)(180180
sec

180 222

22
2 Nv

vNd

vNNveNv
r

ππππ ≈
+

⋅=
������

=
x

 (pixels/degree)  (5) 

This approximation is equivalent to that given in [10]. According to the sampling theorem, the highest frequency that can 
be represented without aliasing by the display, or the display Nyquist frequency, is half of r: 
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Combining (3) and (6), we obtain the cutoff frequency for a given location x by: 
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At a small viewing distance such as v = 1, the display Nyquist frequency is so small that the cutoff frequency stays 
almost unchanged for a large range of eccentricities. However, strong “ foveation”  is still obtained because the contrast 
sensitivity is very sensitive to eccentricity, as shown in Fig. 1. Finally, we define the foveation-based error sensitivity for 



 

given viewing distance v, frequency f and location x as: 
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Sf is normalized so that the highest value is always 1.0 at 0 eccentricity. 

 
3.   FOVEATED IMAGE QUALITY METRIC 

 
The DWT has proved to be a powerful tool for image processing and coding. In the 1-D DWT, the input discrete signal s 
is convolved with highpass and lowpass analysis filters and downsampled by two, resulting in transformed signals sH and 
sL. The signal sL can be further decomposed and the process may be repeated multiple times. The number of repetitions 
defines the wavelet decomposition level λ. For image processing, the horizontal and vertical wavelet decompositions are 
applied alternatively, yielding LL, HL, LH and HH subbands. The LL subband may be further decomposed and the 
process repeated multiple times. A typical DWT decomposition structure is given by Fig. 2. Let ),( θλ  represent the 

subband of level λ and orientation θ , where θ  is an index representing the LL, LH, HH or HL subband. The wavelet 
coefficients at different subbands supply information of variable perceptual importance. In [10], psychovisual 
measurement results were given for the visual sensitivity in wavelet decompositions. A model that fits the experimental 
data is [10] 

Ylog  = alog  + fk(log – 2
0 )log fgθ ,     (9) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where Y is the visually detectable noise threshold and λ−= 2rf  [10] is the spatial frequency. For gray scale models, a is 

[10] 0.495, k is 0.466, 0f  is 0.401, and θg  is 1.501, 1, and 0.534 for the LL, LH/HL, and HH subbands, respectively. 

The error sensitivity in subband ),( θλ  is given by: 
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where θλ ,A  is the basis function amplitude given in [10]. Let θλ ,B  denote the set of wavelet coefficient positions 

residing in subband ),( θλ . For each subband, we calculate the corresponding foveation point f
θλ ,x  in it: 
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Fig. 2 DWT decomposition structure. 
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Given a wavelet coefficient at θλ ,Bx ∈ , its equivalent distance from the foveation point in the spatial domain is given 

by 
2,, 2)( fd θλ

λ
θλ xxx −= . With this distance, we have 
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A foveation-based error sensitivity model in the DWT domain is obtained by combining (10) and (12): 
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where β1 and β2 are parameters used to control the magnitudes of wS  and fS , respectively. We use β1 = 1 and β2 = 2.5. 

Fig. 3 shows ),( xvS  for v = 1, 3, 6 and 10, respectively. We define a foveated wavelet image distortion (FWD) metric 

as: 
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where M is the number of the wavelet coefficients, and )( nxc  and )( nxc′  are the n-th wavelet coefficients of the 

original and the compressed images at location nx  in the DWT domain, respectively. Q is set to 2 in our measurement 

system. We define a foveated wavelet image quality index (FWQI) as: 
)exp( FWDFWQI −= .       (15) 

The value of FWQI is between 0 and 1, with the maximum value 1 at FWD = 0. Because ),( nxvS  varies with the 

viewing distance v, both FWD and FWQI of a test image are functions of v, instead of single values. 

Although there is only one foveation point at one time for one human observer, it is necessary to allow multiple 

  
 

  
 

 
Fig. 3  Foveation-based error sensitivity mask in the DWT domain. The top-left, top-

right, bottom-left, and bottom-right figures are for viewing distance v = 1, 3, 6 
and 10 times of the image width, respectively. (Brightness logarithmically 
enhanced for display purpose) 

 



 

foveation points in practice to provide more flexibility and robustness. This is because 1) the usual pattern of human 
fixation is that the fixation point moves slightly around a small area of the center point of interest, 2) there may be 
multiple human observers watching the image at the same time, and 3) there may exist multiple points and/or regions in 
the image that have high probability to attract a human observer’s attention. Our system can easily adapt to multiple 

foveation points by changing the error sensitivity mask S(v, x). Suppose that there are P foveation points fx1
, fx2

, … , 
f

Px  in the image (in digitally sampled images, the foveation regions can also be regarded as collections of foveation 

points). For each of the points, we can calculate the error sensitivity mask as in the above sections and have Si (v, x) for i 
= 1, 2, …, P. The overall error sensitivity should be given by the maximum of them: 
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In practice, it is not necessary to compute each Si (v, x). Since the error sensitivity is monotonically decreasing with 
increasing distance from the foveation point, given a point x, the foveation point that is closest to it must generate the 
maximum Si (v, x), so what we need to do is let  
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By doing this, a large amount of computation is saved. 

 
4.   IMAGE CODING USING THE FOVEATED QUALITY METRIC 

 
SPIHT [11] is a very efficient progressive wavelet image coding algorithm. We designed a modified SPIHT algorithm 
and tuned it using the above FWQI model to optimize the foveated visual quality at any given bit rate. We call the new 
coding algorithm the embedded wavelet image coding (EFIC) algorithm [5]. The encoded bitstream can be truncated at 
arbitrary place to create reconstructed images with different quality and depth of foveation. Fig. 4 shows the 512×512 
“Zelda”  image encoded with both SPIHT and EFIC algorithms. Fig. 5 gives the FWQI comparisons of the EFIC and 
SPIHT compressed “Zelda”  images at 0.015265, 0.0625 and 0.25bpp, respectively. The FWQI for each image is given as 
a function of the viewing distance, instead of just one fixed value. Significant quality gain is achieved throughout the 
whole range of the viewing distances. This is consistent with the foveated subjective quality of Fig. 4. Fig. 6 shows how 
the FWQI result changes with the encoding bit rate. In Fig. 7, we compare the 288×352 “News”  image compression 
results at the same bit rate of 0.25bpp but with different ROI region selections. It turns out that uniform resolution 
SPIHT coding cannot provide an acceptable image, but if the ROIs are known to us, visually satisfactory quality image is 
still achievable with the EFIC algorithm. 
 
The EFIC decoding can also be viewed as a foveation filtering process with decreasing foveation depth. Note that, in 
typical natural images, the energy is concentrated in the low frequency bands. As a result, in the peripheral regions, the 
low frequency wavelet coefficients have greater opportunity to be reached before the high frequency ones. In the region 
of fixation, both low and high frequency coefficients have good chances to be reached early because of their larger 
importance weights. If the bit rate is limited, then decoding corresponds to applying all-pass filtering to the region of 
fixation and low-pass filtering to the peripheral regions. This is the basic idea of foveation filtering. With an increase of 
the bit rate, more bits are received for the high frequency coefficients of peripheral regions, thus the decoded image 
becomes less foveated. The EFIC coding results in Fig. 4 demonstrate this very well. 

 
5.   CONCLUSION AND DISCUSSION 

 
We described our foveated wavelet image quality measurement approach, which considers multiple factors of the HVS, 
including the space variance of the contrast sensitivity function, the spatial variance of the local visual cut-off frequency, 
the variance of human visual sensitivity in different wavelet subbands, and the influence of the viewing distance on the 
display resolution and the HVS features. We show its effectiveness by using it as a guide for optimal bit assignment of 
an embedded foveated image coding system. 

 



 

 
 

  
 

  
 

  
 
 



 

  
 

  
 

  
 

Fig.4  “Zelda”  image compression result comparison. Top: Original image with the foveated 
ROI indicated; The left images that followed: SPIHT coded images; The right images 
that followed: EFIC coded images. The bit rates from top to bottom are 0.015625bpp 
(CR=512:1), 0.03125bpp (CR=256:1), 0.0625bpp (CR=128:1), 0.125bpp (CR=64:1), 
and 0.25bpp (CR=32:1), respectively. 



 

When we introduce our foveation image coding and processing work to people, the most frequently asked question is: 
“How do you know the foveation points?”  Generally, there are two methods to determine the fixation point(s) and 
region(s). The first is a completely automatic method. There has been a lot of research work in the visual psychology 
community towards understanding high level and low level processes in deciding human fixation points [12, 13]. High 
level processes involves a cognitive understanding of the image. For example, once a human face is recognized in an 
image, the face area is very likely to become a heavily fixated region. Low level processes determine the points of 
interest using simple local features of the image [13]. The second method to determine foveation point(s) is the 
interactive method. In some applications, an eye tracker is available, which can track the fixation point and send it to the 
foveated imaging system in real time. In some other application environments, the eye tracker is not available or 
inconvenient. A more practical way is to ask the users to indicate fixation points using a mouse. Another practical 
possibility is to ask the users to indicate the object of interest, and an automatic algorithm is employed used to track the 
user-selected object as the foveated region in the image sequence that follows. 
 
It is worth noting that in a foveated system, no object segmentation is needed. As shown in Fig. 4 and Fig. 7, it is not 
necessary for a foveated system to extract the boundary of an object precisely. A rough foveated region is enough for the 
foveated system to work properly. Note that manually picking foveation points is much easier than manually defining 
ROIs in the image. Also note that automatically locating foveation regions is much easier than automatically segmenting 
objects from the image. In this sense, a foveated image coding and communication system is more implementable, 
flexible, robust and thus practical than the segmentation-based ROI coding systems. 
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Fig. 5 FWQI comparison of EFIC and SPIHT compressed “Zelda”  image at 
0.15625bpp, 0.0625bpp and 0.25bpp. 

 

 
 

Fig. 6 FWQI results of EFIC compressed “Zelda”  image at different bit rates. 



 

 
 
 
 
 
 

  
 

  
 

  
 



 

Fig. 7 0.25bpp (CR=32:1) “News”  image compression result comparison. Top-left: Original image with 
foveated ROIs indicated; Top-right: EFIC with the upper ROI only; Mid-left: EFIC with the lower left 
ROI only; Mid-right: EFIC with the lower right ROI only; Bottom-left: EFIC with all the three ROIs; 
Bottom-right: SPIHT uniform resolution compression. 


