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ABSTRACT

A recent trend in computer graphics and image processing has been to use Iterated Function System (IFS) to generate
and describe images. Barnsley et al. presented the conception of fractal image compression and Jacquin was the first to
propose a fully automatic gray scale still image coding algorithm. This paper introduces a generalization of basic IFS,
leading to a conception of Partial Iterated Function System (PIFS). A PIFS operator is contractive under certain conditions
and when it is applied to generate an image, only part of it is actually iteratedly applied. PIFS provides us a flexible way to
combine fractal coding with other image coding techniques and many specific algorithms can be derived from it. On the
basis of PIFS, we implement a partial fractal block coding (PFBC) algorithm and compare it with basic IFS based fractal
block coding algorithm. Experimental results show that coding efficiency is improved and computation time is reduced
while image fidelity does not degrade very much. '
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1. INTRODUCTION

Since Barnsley et al. presented the conception of fractal image compression based on Iterated Function System (IFS)'
and Jacquin proposed a fully automatic gray scale still image coding algorithm,>’ the interest in fractal image coding has
been steadily growing. Jacquin’s algorithm has been studied and improved in recent years “®* **>°. We briefly describe the
basic IFS based image coding algorithm as follows which is equivalent to those in most previously published work.

A gray scale image can be described as a real valued function ¢:QQ — /. Here, Q c®? (R denotes the set of real
number) represents the underlying space and /=[/_; , /.. JcR is a real interval representing the possible intensity values
within the image (for example, for 8bits per pixel (bpp) gray scale images as discussed in this paper, it is [0,255]). The set
of all these functions can be converted into a complete metric space (Y, d) by defining the distance between two images as
the /* metric:

V¢1,¢z eY d(¢,,¢,)= sup |¢1(X,,V)’¢2(X,.V)[ ¢Y)

(x,3)eQ

Q is partitioned into non-overlapping subsets, such that

N
a=\JrR, RcQ (=12..N) @

RN, =@ (=)
Each R, corresponds to a geometrical transformation g;:D; - R; (D, <, i=1,2,...N) and a luminance transformation
v,: R>R (i=1,2,..N). g; is combined with v; to form the mapping
w;:D, >R (here R =R xI, D;=D;x1I)
V(x,y,2) €D, w;(x,9,2) = (&(x,¥),v;(2))
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In practice, the geometrical transformation g; is an affine linear transformation that combines a spatial contraction
and a position shift that maps D, (often block) to the position of R; (often block). The luminance transformation v, is set
to:

v

i

Zgp =a; 2, +b;
where z; and z, are the intensities of the pixels within R, and g;(D;) respectively. g, called scale factor and b; called
translation term are chosen to minimize
e= [wat)-ay (xy)-bFdxdy
(x.y)eR;
where wr(x,)) and y,(x,y) are intensities of the pixels extracted or calculated from the original image . We can

obtain a; and 5, by solving the equations % =0 and -Z;Z’— =0. We get

i i

o = VRV g~ VR ¥V,
vi-(w,)’

bi =E—aiw<g

where “ ~ ” denotes the average operator.

The combination of all w; ’s results in a basic Iterated Function System (IFS) operator
W: Y=Y

N
w(g) = Jw.(D.Ng)
i=]
V(x,)) €Q (Wh)(x,y) =v,((g ' (x,y)) when (x.y)€R,
W is a contractive mapping in space (Y, d), provided all v, ’s are contractive. That is
if F0<s<1, Viel[l,N], Vz;,z, eR, |v,-(z])—-v,-(zz)]<s-|z]—zzl 3)

then Vé.p, €Y d(W($,),W(9,)) <5-d(¢;,6,)

where s is called the contractive factor of W. According to the Fixed Point Theorem of complete metric space, W possesses
the following properties:

(a) There exists a unique attractor image ¢ €Y, such that
Wg)=¢
(b) To compute the attractor image ¢ :
v ey, LmW (@ P)=¢
n—oo
(c) Collage theorem estimate:

d(y, W(y))

VyeY, dgy)<
1-s

According to the theorems above, if we want to code an image y . then the encoding procedure is to find an IFS
operator W, such that application of ¥ to  does not change y very much. The operator /¥ usually can be represented by
fewer bits, thus the image data of y is compressed. When decoding, the IFS operator ¥ is iteratedly applied to any initial
image ¢ , so that a sequence of images ¢, ¢, ..., ¢ ... is generated and we can obtain a unique attractor image
¢ (reconstructed image) in the end.
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2. PARTIAL ITERATED FUNCTION SYSTEM

When applying the basic IFS based algorithm to real world images, we find it is difficult to code some kinds of regions
efficiently. For example, a very smooth region can be represented by a uniformly gray region with gray level equal to the
mean value of the pixels within the region and usually 6-8 bits are enough. However, to code this region by a fractal
mapping, several parameters including horizontal and vertical geometrical shifts, intensity scale factor and translation term
should be coded. It is difficult to represent the codes for these parameters by fewer than 8bits. For the above reason, coding
these kinds of regions using some other more adequate approaches may be a better choice. Then a problem arouses: The
fractal codes for different regions are highly correlative to each other. If some of these codes are replaced by other kinds of
codes, can the remaining fractal codes still be effective? We try to solve this problem by introducing a new conception of
Partial Iterated Function System (PIFS).

To code only part of the image by fractal transform, we modify the partition of Q (2) as:
Q=GUH GNH=0Q
i’ .
G={Jr R <G (=12,M)
i=1
RNR; =2 i#7))

Where G is to be coded by fractal transform and H is to be coded by other approaches. Let G=Gx/, H=Hx[. We
define the PIFS operator as

why—y
M
w" @) = Jw (D NeNUCHN$))
i=l1
Where the structures of w; ’s are the same as those having been described for basic IFS operators. C is a mapping applied to

H part of the image. Particularly, when H =@, W' and W are the same. Therefore, PIFS can be viewed as a
generalization of basic IFS. If C is a constant function mapping, such that
Vo eY C(HN$)=HNe 4)

(where ¢ €Y is a constant image), then the function form of W’ become

-1
e e [T G

Theoreml: in [* metric space (Y,d) (the I” metric is defined as (1)), if there exists a contractive factor s (0<s<l) for a

PIFS operator W P, then W” is a contractive mapping.

Proof:
Y(x,y) €Q,
if (x,y) e D; € G, then

(077 6,1)(x, )= (" 9)(x, )|
RO ERN ERACH TN ERY)

)
<5017 e D) =0, w7 ()
<s- sup [b;(x,p)—d,(x,»)|
(x.9)eQ
if (x,y) € H, then

776 )0x, 7) = (9, )%, )
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=le(x,y)—c(x, )

=0
<s- sup jo,(x, )=, (x,)
(x,)eQ
sup |(79,)(x, )= (W 9)(%,3)| < s sup |,(x,)~ 9, (x,)|
(x.y)eQ (x.y)eQ
that is AT @)W (§,)<5-d$,,6,) #

Also according to the Fixed Point Theorem of complete metric space, W’ still possesses the properties (a), (b) and (c).

Similar to having been discussed for basic IFS operator #, * the condition which is sufficient to ensure contractivity for /%

metric may be sufficient to ensure only eventual contractivity for 1% metric:

. 2
V1,6, €Y d®1,62)=( D I010x»)=0,(x))"
(x,1)eQ
Actually, eventual contractivity is sufficient to ensure (@) and () but not (c).

Theorem2: In [* metric space (Y,d), there exists a unique image ¢ €Y, such that

wre)=9

Proof:
Existence:

there exists a unique image ¢ in /* metric space, such that

wr@)=6
that is sup |(W” ®)(x, ) —d(x, y)] =0
(x.9)eQ :
V(x,)) €Q 77 4)x, )~ 0(x, )| =0

for I* metric space,

d(WP(¢)’¢) = ( Z'(Wpd))(x,y)_(b(x’y)‘z)lu =0
(x,y)eQ
wr@)=¢

That is to say, W has the same attractor both in /* and /?> metric spaces.

Uniqueness:
if there exist different ¢, and ¢, , such that

wre,)=9, and wr(9,)=0,

then A" )61 =C S| 852 -1 (x,3)] )2 =0
(x.9)eQ
V(x,y) €Q |77 9)(x, ) =9, (x, )] =0
sup |(W79,)(x,) =6, (x, )| =0
(x.y)eQ
in /* metric space, W, =9,
for the same reason, in /* metric space, wr(6,)=0,

This is contradictory to that w? only has one attractor in /* metric space (property (a)). #
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Theorem3: In I* metric space (Y,d), to compute the unique attractor image ¢ :

vo© ev, lim (W)™ 0@) = ¢
n-—>wo
Proof:
For /” metric space, according to property (b)
V. Vn>N sup |F7)™" (6O )x, 1) - (%, )| <& )
(x.9)eQ
then for /> metric space
d(w )" )0
. 2
N CAR M (R CROETIERY DL
(x,y)eQ

<Y Csup |7 9 )x 1) -0 )*)"”

(x,y)eQ (x.y)eQ

®)
<e-( ZI)”2

(x,y)eQ
=C-g (C is a constant)

lim#")"6®) =0 #

All the conditions for the above theorems are sufficient but not necessary conditions. In practice, the conditions usually
are not strictly fulfilled. Actually, even some of the v;’s can be non-contractive.’ However, we still get many
“experimentally contractive” operators.

3. IMAGE CODING ALGORITHM

According to the construction and properties of PIFS operator, we develop a general PIFS based image
encoding/decoding system which is shown in Fig. 1. To encode an original image, we partition it into two_parts, G and H,
which are to be coded using fractal coding and other techniques respectively. The codes for G and H, together with the
codes for partition information are stored or transmitted. When decoding, the partition information is decoded first. Then is

H.Intheend, W% is iteratedly applied to generate the reconstructed image. For each iteration,
¢(n) = WP (d)(n-l))

M
=(Jw@, N PnucH Ny
i=l1

@ M
=Jw @ Ne“PyucHNe) n=12,..

i=1
Notice that only the first part of $™ (the codes for G part) is actually iteratedly applied in each iteration. The iteration

procedure stops at the nth iteration when we are satisfied with the image &™ which is an approximation of the attractor
image ¢ .

The general system offers much flexibility for practical implementation.

* The flexibility of partition standard and algorithm.
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e The flexibility of choosing which technique to code H part of the image.
o The flexibility of partition information coding.

The flexibility leads to many specific image encoding/decoding algorithms. An example is a fractal coding and bi-linear
interpolation combined algorithm.6 We implement another algorithm where an adaptive quadtree segmentation algorithm is
employed. We describe it as follows.

The whole image (22 x2%) is segmented into 4 subblocks (2" x2™, m=D-1I). For each subblock, we compute its
mean value M and the mean square error (MSE) between the original block and the uniformly gray block with gray level
equal to M. MSE is compared with a threshold T, . If MSE <T,, , the block is considered as a smooth block and M is
quantified and coded. If MSE >T,,, we try to approximate this block using fractal mapping. If the MSE between the
original block and the fractal mapping block is not greater than T, , the block is considered to be suitable for fractal coding
and its fractal codes are stored. Otherwise, the block is partitioned into 4 2”~' x2™~! subsubblocks. The processing of each
subsubblock is the same as its parent block. This procedure continues until a minimal block size threshold is reached. The
partition information is coded using Huffman coding. For each partition stage m, the MSE threshold 7,, can be adjusted to

make a compromise between compression ratio and image fidelity. In our practical algorithm, the whole image is directly
partitioned into 64x64 or 32x32 blocks and segmentation stops when block sizes of 4x4 or 2x2 are reached.

We use peak-signal-to-noise (PSNVR) to determine image fidelity which is defined as:
@k~ 1y

2 Uy =1y

i=1 j=1

PSNR = 10log,,

1y
2
where & is the number of bits per pixel (bpp) of the image and r is the number of the size of the image. /; and / ,, are the

intensities of the pixels at the position (i, j) within the original image and the test image respectively. For example, for the
image “Lena” 512x512, 8bpp, &=8 and r=512 (see Fig. 2).

Our algorithm can be viewed as a representative of PIFS based partial fractal block coding (PFBC) algorithms. Table 1
and Fig. 3 show some coding results of basic IFS based basic fractal block coding algorithm (basic FBC) and PFBC
algorithm. It appears that by using PFBC technique, the bit rates are reduced by more than half and the coding time is
reduced by about 60~75% while the peak signal-to-noise ratios (PSNVRs) do not degrade very much. Much time is saved
because only part of the image is coded using fractal approximation which dominates most of the coding time. Since some
regions are coded by more suitable approaches, coding efficiency is improved.

4. CONCLUSIONS AND EXTENSIONS

In this paper, we present a conception of partial iterated function system (PIFS) which is a generalization of basic IFS.
Some properties of PIFS such as contractivity are discussed. A general PIFS based image encoding/decoding system is also
introduced. Theoretical analysis and experimental results show that PIFS based algorithm has some advantages over basic
IFS based algorithm for improvement of coding efficiency and reduction of computation time.

We think PIFS based fractal image coding is very promising because on the basis of PIFS, most other image coding
techniques can be easily and flexibly combined with fractal image coding. The improvement may be in the following

directions:

e The improvement of fractal image coding and other image coding techniques themselves. Any improvement in either
fractal coding or other techniques can also be effective in the combined algorithm.
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¢ Good standards to determine which kinds of regions are suitable for fractal coding and which are not. This is a
difficult but very important problem because a good classification of image regions is the premise of taking full advantage
of PIFS.

o The improvement of partition information coding. This is related to partition standard and algorithm. Arithmetic
coding may be a good choice.

e The fractal and non-fractal coded regions may make use of information from each other, so that both of them can be
coded more efficiently.
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Fig. 1. PIFS based image encoding/decoding system



Table 1. Comparison of coding results by basic FBC and PFBC. Test image: “Lena”(512x512, 8bpp).

Coding Algorithm Bit Rate(bpp) PSNR(dB) Relative Coding Time
basic FBC 0.391 30.1 1
0.194 29.8 0.39
PFBC 0.178 29.5 0.33
0.143 289 0.26

(@

b

Fig. 3. Reconstructed image. (a) by basic FBC, 0.391bpp, 30.1dB; (b) by PFBC, 0.178bpp, 29.5dB
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