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ABSTRACT   

Complex wavelet structural similarity (CW-SSIM) index has been proposed as a powerful image similarity metric that is 
robust to translation, scaling and rotation of images, but how to employ it in image classification applications has not 
been deeply investigated. In this paper, we incorporate CW-SSIM as a kernel function into a random forest learning 
algorithm. This leads to a novel image classification approach that does not require a feature extraction or dimension 
reduction stage at the front end. We use hand-written digit recognition as an example to demonstrate our algorithm. We 
compare the performance of the proposed approach with random forest learning based on other kernels, including the 
widely adopted Gaussian and the inner product kernels. Empirical evidences show that the proposed method is superior 
in its classification power. We also compared our proposed approach with the direct random forest method without 
kernel and the popular kernel-learning method support vector machine. Our test results based on both simulated and real-
world data suggest that the proposed approach works superior to traditional methods without the feature selection 
procedure. 
 
Keywords: image similarity measure, image classification, CW-SSIM, random forest, kernel, recursive partitioning, tree 
classification, hand-written digit recognition  
 

1. INTRODUCTION 
Due to the high dimensionality nature of digital images, image classification algorithms typically require a feature 
extraction process (such as corner detection) or an appearance-based dimension reduction stage (such as principle 
component analysis) before the application of statistical learning and classification algorithms. Meanwhile, there has 
been some interesting recent progress on defining similarity metrics between two images that are in their original 2D 
functional form. These include the structural similarity (SSIM) index1 and its extension – complex wavelet SSIM (CW-
SSIM) index2,3. Conceptually, these similarity metrics have the potentials to be used in image classification problems, but 
there has not been sufficient study on how this should be performed in real-world scenarios. In this paper, we propose a 
novel but efficient way to incorporate CW-SSIM in a tree-based learning algorithm – the random forest4,5, which is a 
powerful ensemble of many randomly perturbed classification trees. A traditional random forest is difficult to be 
implemented directly for image classification because it relies on a categorical feature space to construct trees. Here we 
are interested in using the concept of “kernel-induced classification tree and random forest”6, which uses kernel functions 
to construct splitting rules in a tree-based models and thus the random forest. This overcomes the limitation of traditional 
direct random forest methods in functional types of classification problems. 

Image similarity indices play a crucial role in the development, assessment and optimization of a large number of image 
processing and pattern recognition systems. An image can be viewed as a 2-D function of intensity. Perhaps the simplest 
way to compare the similarity of two images is to compute the mean squared error between these two 2D functions. 
Unfortunately, such a point-wise similarity measure does not take into account the correlation between neighboring 
image pixels and has been shown to be problematic in many ways7. Recently, a substantially different approach called 
the SSIM index1 was proposed, where the structural information of an image is defined as those attributes that represent 
the structures of the objects in the visual scene, apart from the mean intensity and contrast. Thus, the SSIM index 
separates the comparison of local structural patterns from local mean intensity and contrast comparisons. The SSIM 
index has shown somewhat surprising success in predicting perceptual image quality when compared with more 
sophisticated methods based on psychological models of the human visual system7. A common drawback of both MSE 
and SSIM metrics is their high sensitivity to small geometric distortions such as translation, rotation and scaling. The 
CW-SSIM measure overcomes this problem by transforming SSIM to the complex wavelet transform domain2,3. The key 
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idea behind CW-SSIM is that small geometric image distortions lead to consistent phase changes in local wavelet 
coefficients, and that a consistent phase shift of the coefficients does not change the structural content of the image. The 
potential of CW-SSIM has been demonstrated with a series of applications, including image quality assessment2, digit 
recognition2, line-drawing comparison3, segmentation comparison3, range-based face recognition8 and palmprint 
recognition9. 

Tree-structured classification models are popular alternatives to classical methods such as logistic regression and 
discriminant analysis. The Classification and Regression Trees (CART) methodology10 has been a very popular and 
standardized approach in the statistics literature. CART and most other recursive partitioning algorithms grow a binary 
decision tree in a sequential fashion by using splitting rules based on predictor variables to split the data in such a way as 
to reduce variation in a response variable. In CART, specifically, the trees are grown as large as possible to avoid early 
stopping, and then pruned backward using a cross-validated cost-complexity criterion to avoid overfitting of the training 
data, so as to obtain the “right-sized” tree. When the data space is complicated, a single CART model is unstable and 
may not be able to fulfill a good job. Breiman4,5 proposed the random forest procedure, which is a tree-based ensemble 
classifier to improve CART’s predictive ability and stability. Basically, the data space is perturbed by either bootstrapped 
samples or random selections of predictor variables or both. Many different CART models are then grown in parallel on 
the perturbed data spaces. These different trees are combined to vote for the classification of new cases. Generally, 
random forest is much more accurate than a single CART model in classification. 

2. METHODOLOGY 
2.1 Complex Wavelet Structural Similarity Index (CW-SSIM) 

The SSIM index was originally proposed to predict perceived image quality1,7. The fundamental principle is that the 
human visual system is highly adapted to extract structural information from the visual scene, and therefore, a 
measurement of structural similarity should provide a good approximation of perceptual image quality. In particular, 
SSIM attempts to discount those distortions that do not affect the structures (or local intensity patterns) of the image. In 
the spatial domain, the SSIM index between two image patches x = {xi | i = 1, 2, …, M} and y = {yi | i = 1, …, M} is 
defined as 
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where µ and σ are the sample mean, standard deviation and covariance terms of x, y and xy, respectively, and C1 and C2 
are two small positive constants to avoid instabilities. The maximum value 1 is achieved if and only if x and y are 
identical. 

The major drawback of the spatial domain SSIM algorithm is that it is highly sensitive to translation, scaling, and 
rotation of images. The CW-SSIM index is an extension of the SSIM method to the complex wavelet domain. The goal is 
to design a measurement that is insensitive to “non-structural” geometric distortions that are typically caused by nuisance 
factors, such as changes in lighting conditions and the relative movement of the image acquisition device, rather than the 
actual changes in the structures of the objects. The CW-SSIM index is also inspired by the impressive pattern recognition 
capabilities of the human visual system1. In the last three decades, scientists have found that neurons in the primary 
visual cortex can be well-modeled using localized multi-scale bandpass oriented filters that decompose natural image 
signals into multiple visual channels. Interestingly, some psychophysical evidence suggests that the same set of visual 
channels may also be used in image pattern recognition tasks11. Furthermore, phase contains more structural information 
than magnitude in typical natural images, and rigid translation of image structures leads to consistent phase shift. The 
CW-SSIM index is defined as 
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Here  and  are the sets of local coefficients (in the neighboring spatial locations of the same wavelet subband) 
extracted from the complex wavelet transforms (e.g. the complex version of the steerable pyramid decomposition12) of 
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the two images being compared, respectively, c* denotes the complex conjugate of c, and K is a small positive constant. 
The purpose of K is mainly to improve the robustness of the CW-SSIM measure when the local signal-to-noise ratios are 
low. We consider CW-SSIM as a useful measure of image structural similarity based on the beliefs that 1) the structural 
information of local image features is mainly contained in the relative phase patterns of wavelet coefficients, and 2) 
constant phase shift of all coefficients does not change the structure of the local image feature. 
 
2.2 Kernel-induced Classification Tree and Random Forest 

A kernel is a function K, such that for all and ixr p
j Xx ∈
r

, i, j = 1, 2, …, n 

  K( ixr , jxr ) = >< )(),( ji xx rr φφ ,                            (3) 

where Ф is a (non-linear) mapping from the input space to an (inner product) feature space. If the observation i is fixed in 
the training sample, and observation j is a new input, then the kernel function above can be treated as a new feature 
defined by observation i, denoted as K( ). Some popular kernels are inner product kernel, polynomial kernel and 
Gaussian (radial basis) kernel.  

⋅,ixr

A classification tree model is a recursive partitioning procedure in the feature space. Starting from the root node, at each 
step, a greedy exhaustive search is implemented to find the best splitting rule such as “Xi < c” for numerical features. If 
the answer is yes, then the observation will move to the left child node, and otherwise to the right child node. The 
procedure is implemented recursively until a very large binary tree is constructed. A large tree usually overfits the 
training sample. Next, a cross-validation process is employed to prune the tree back to its proper size. A single 
classification tree constructed using the procedure described above is highly interpretable but quite unstable and weak in 
prediction. Figure 1 gives an example. A random forest algorithm is simply a replication of the classification tree 
procedure while introducing a random vector in the construction space. This may be implemented by limiting the number 
of features to be searched at every step growing the tree and/or bootstrapping the data set. The trees in a random forest 
are usually very large and need no pruning. Due to the instability of classification trees, they are quite diversified due to 
the random vector introduced in the process. Each classification tree generally is a low-bias but high-variance model. 
When they are combined to vote for a decision, the variance is reduced and the classification power becomes very strong. 
Another attractive property is that including more trees in the random forest will not overfit the training samples. 
However, the random forest approach described above usually works in a feature space. For functional types of data such 
as images, they are difficult to be used directly. 

 

 
     Figure 1. Left: an example of a classification tree with 3 terminal nodes. Note that Xi and Xj are features in the data space. Right:        

                 an example of a kernel-induced classification tree with 3 terminal nodes. Note that Xi and Xj are observation vectors in the  
                 data space and the K( , )’s are kernel functions defined on these observations 



 
 

 
 

 

Here we use the concept of kernel-induced classification tree to overcome this limitation. Instead of using the raw signal 
features in the data space to construct splitting rules, kernel functions based on observations are employed. Since the 
definition of kernel is very flexible to handle various types of data, the potential of random forest is greatly enhanced and 
extended. Not only the feature space is enlarged, but also some complicated and non-linear hidden patterns between 
observations can be captured by the random forest learning procedure. An example of a kernel-induced classification tree 
is illustrated in the right figure of Figure 2. A kernel-induced random forest is simply a replication of many such trees 
with a random vector introduced. In this paper, the types of kernel we consider are Gaussian, inner product and CW-
SSIM kernels. 

3. RESULT 
3.1 Experiment on Simulated data 

To demonstrate the proposed algorithm, here we consider the classification problem of hand-written digit images as an 
example. The experiment is first carried out on simulated data. A training/testing digit image database of 500 images was 
created by shifting, scaling, rotating, and blurring ten hand-written template digit images. Figure 2 shows a random 
subset of examples in our image database. 

 

 
       Figure 2. A random sample of simulated hand-written digit images. 

 

The random forest-based classification model with three different kernels (CW-SSIM, Gaussian and inner-product) was 
trained using 450 images randomly selected from the database, and then tested using the rest 50 images. This process is 
replicated 100 times, each with a different random division between training and testing sets. The misclassification rate 
and its standard deviation for each kernel are then computed. Since the number of trees in the random forest also has 
impact on the overall classification performance, we tested the performance of the algorithms with different numbers of 
trees. The test results are summarized in Figure 3, where the error bars represent ±1 standard deviations from the average 
test error rates. It can be observed that CW-SSIM kernel based random forest algorithm performs the best in all 
situations, while the Gaussian kernel method results in the worst performance. This verifies our hypothesis that CW-
SSIM is a better kernel in the construction of image classification algorithms. Moreover, increasing the number of trees 
does not seem to improve Gaussian kernel based algorithm, but has positive impact on the other two methods. When the 
number of trees is reasonably large, the test error rate is likely to converge. We also observe that including more trees in 
the forest does not lead to overfitting. 

To have a more diverse range of comparisons, we also included support vector machine (SVM) and direct random forest 
methods (without kernel) in our experiments. To perform a fair comparison with the proposed kernel-based approach, no 



 
 

 
 

feature extraction and dimension reduction process is applied in our implementations of the SVM and direct random 
forest methods. For SVM, we adopt the commonly used Gaussian kernel and tune its parameter to achieve the best test 
set result. For random forest, we use the default settings which are similar to that of Kernel-induced random forest. 
Again, we used 450 images for training and 50 images for testing, and the process is replicated 100 times. The mean 
misclassification rate and its standard deviation for each method for all the algorithms under comparison are given in 
Table 1. It can be observed that the proposed CW-SSIM kernel random forest method significantly outperforms SVM, 
direct random forest alone, as well as other kernel-based random forest algorithms. 
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Figure 3. Test error rate plot of three different kernels and different number of trees in the kernel-induced random forest. 

 

           Table 1. The results of CW-SSIM induced random forest, original random forest and SVM on the simulated image data. 

 

 

 
Mean error rate 

(%) 
Std.ev 

(%) 
Inner product 5.8 3.4 

Gaussian 22.9 5.8 
CW-SSIM 1.3 1.6 

random forest 7.7 4.2 
SVM 15.1 4.9 

 

 

 

 

 

 

3.2 Experiment on MINST database 

We tested our method on the well-known MNIST benchmark of handwritten digit images13. The MNIST database is 
composed of 60000 training and 10000 test examples, where the data were collected among Census Bureau employees 



 
 

 
 

and high school students. The original images have a normalized size of 28×28 and contain gray levels for the purpose of 
anti-aliasing. Some sample images are shown in Figure 4. In our preliminary test, we extracted a subset from the 
database for training and testing. 

We tested the performance of random forest algorithms with three different kernels for different numbers of trees. The 
test results are summarized in Table 2, in which Columns 1 to 5 show 5 trials of tests where 4000 images randomly 
selected from 5000 images were used for training and the remaining 1000 images from the same set were employed for 
testing. The results in Column 6 used all the 5000 images for training and a separate set of 2000 images for testing. 
Clearly, CW-SSIM kernel based random forest algorithm performs significantly better than the other methods in all test 
situations, while the Gaussian kernel method results in the worst performance. The performance of the proposed method 
as a function of the number of trees in random forest is shown in Figure 5. It can be observed that the test error rate 
reduces to a low level with around 500 trees. Further increasing the number of trees does not improve the performance 
but leads to small fluctuations. In our experiment, SVM method without any preprocessing and feature selection process 
does not give reasonable result, so we do not report its performance in Table 2. 

 
       Figure 4. A random sample of the original hand-written digit images from MINST data 

 

       Table 2. Comparison of misclassification rates of direct and three kernel-based random forest methods on MNIST database 
 

  Test 1000 Test 1000 Test 1000 Test 1000 Test 1000 Test 2000 
cwssim 7.5 5.4 5.5 6.3 5.5 4.8 
Gaussian  8.3 8.4 8.3 8.3 8.2 8.4 
Inner Prod. 12.7 10.9 10.9 12.5 10.5 10.5 
random 
forest 8.1 6.1 6.5 6.7 6.3 6.1 

 

 

 
 
 



 
 

 
 

 
     Figure 5. Test error rate of CW-SSIM kernel based random forest on MNIST database as a function of the number of trees. 

 

4. CONCLUSION AND FUTURE WORK 
We have proposed a kernel-based random forest learning and classification algorithm, which appears to be an effective 
and reliable tool for image classification when an appropriate kernel such as CW-SSIM is provided. An interesting 
feature of our approach is that no feature extraction or dimension reduction process is involved. Instead, our algorithm 
relies on the powerful CW-SSIM index that provides useful similarity measure between two misaligned images even 
without a registration stage at the front end. The random forest procedure is then applied to this CW-SSIM based kernel 
information space in a novel way to produce superior classification performance. Other kernel-based learning algorithms, 
such as SVM, may not easily generalize themselves to incorporate the CW-SSIM kernel and take advantage of this 
useful similarity measure. Our proposed work is novel, original and efficient. 

The present work is only an initial attempt along a new research direction. There are a number of ways to extend our 
work in our future studies. First, we need a better understanding of the roles of kernels for different types of image 
classification problems. Second, the random forest learning algorithm needs to be adjusted in order to accommodate 
large training datasets. Third, the CW-SSIM measure may be combined with certain feature extraction methods to 
produce more reliable kernels. Finally, the proposed approach may be applied and tested in more diverse types of image 
classification applications. 
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