
FROM H.264 TO HEVC: CODING GAIN PREDICTED BY OBJECTIVE
VIDEO QUALITY ASSESSMENT MODELS

Kai Zeng, Abdul Rehman, Jiheng Wang and Zhou Wang

Dept. of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
Emails: {kzeng, abdul.rehman, jiheng.wang, zhou.wang}@uwaterloo.ca

ABSTRACT
Significant progress has been made recently towards the
next generation video coding standard by the Joint Collabo-
rative Team on Video Coding (JCT-VC). Recently reported
preliminary subjective tests, conducted by JCT-VC mem-
bers, show that the test model of High Efficiency Video
Coding (HEVC) draft codec HM5.0 achieves an average of
more than 50% rate savings over H.264 JM18.3 codec with-
out sacrificing subjective quality. Here we study the per-
formance of well-known objective video quality assessment
(VQA) models and find that state-of-the-art models, includ-
ing the Structural Similarity (SSIM), the Multi-Scale SSIM
index (MS-SSIM), the Video Quality Metric (VQM), and
the MOtion-based Video Integrity Evaluation index (MOVIE),
all provide significantly better predictions of subjective video
quality than peak signal-to-noise ratio (PSNR). Surprisingly,
compared with subjective evaluation scores, all objective
VQA models systematically underestimate the coding gain
of HEVC-HM5.0 upon H.264-JM18.3. We carried out fur-
ther subjective tests to study this somewhat unexpected phe-
nomenon by comparing JM18.3 and HM5.0 coded videos
in terms of frame-level and sequence-level quality, as well
as flickering and ghosting effects. The results provide new
insights for the future development of subjective/objective
VQA and perceptually-tuned video coding methods.

1. INTRODUCTION

Since the official joint Call for Proposals (CfP) [1] on the
next generation video compression standard was announced
in January 2010 by ISO/IEC Moving Picture Experts Group
(MPEG) and ITU-T Video Coding Experts Group (VCEG),
the Joint Collaborative Team on Video Coding (JCT-VC)
has made significant progress in developing the test model,
known as High Efficiency Video Coding (HEVC), which
targets at reducing 50% bit-rate of the MPEG4/H.264 AVC
standard while maintaining the same level of subjective qual-
ity. Recently, a preliminary subjective test was conducted
by JCT-VC members to quantify the rate-distortion (RD)
gain of the HEVC draft codec HM5.0 against a similarly-
configured H.264/AVC JM18.3 codec [2]. The results show

that an average RD-gain of 57.1% is achieved based on the
subjective test data in the form of Mean Opinion Scores
(MOSs). A more detailed objective and subjective evalu-
ation of HM5.0 was reported in [3], which again suggested
that HM5.0 has achieved the target of 50% RD gain over
H.264/AVC and the actual savings can be even higher. Al-
though these subjective tests and evaluations were on ran-
dom access coding configuration only and more compre-
hensive tests are still yet to be conducted, it is speculated
that similar improvement may be achieved in other test con-
ditions, and thus HEVC is very promising at achieving its
initial RD performance target.

While subjective quality assessment is essential in fully
validating the performance of video codecs, it is also highly
desirable to know how the existing objective image and video
quality assessment (IQA/VQA) models predict the subjec-
tive test results and the coding performance. In the past
decades, objective IQA/VQA has been an active research
topic, which aims to automatically predict perceived im-
age and video quality of human subjects. They are use-
ful in real world applications to control and maintain the
quality of image/video processing and communication sys-
tems on the fly, where subjective quality assessment is often
too slow and costly. They may also be embedded into the
design and optimization of novel algorithms and systems
to improve perceived image/video quality. Compared with
IQA, VQA is a much more challenging problem because
of the additional complications due to temporal distortions
and our limited understanding about motion perception and
temporal visual pooling. Traditionally, peak signal-to-noise
ratio (PSNR) has been used as the “default” criterion in the
video coding community in the design, validation and com-
parison of video codecs. Although PSNR is widely criti-
cized for its poor correlation with perceived image quality
and many perceptual objective IQA/VQA models have been
proposed in the literature [4], currently PSNR is still the
primary objective quality reference in codec development
(such as HEVC) mostly by convention.

Given the subjective test data in the form of MOSs col-
lected by JCT-VC members that compare H.264-JM18.3
and HEVC-HM5.0 [2], here we reexamine well-known ob-
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Table 1. Performance Comparison of PSNR, VQM, MOVIE, SSIM and MS-SSIM
Computational

VQA Model PLCC MAE RMS SRCC KRCC Complexity RD-gain RD-gain RD-gain
(normalized) (Class B) (Class C) (Average)

PSNR 0.5408 1.1318 1.4768 0.5828 0.3987 1 -45.0% -34.1% -39.6%
VQM [5] 0.8302 0.7771 0.9768 0.8360 0.6243 1083 -43.1% -31.9% -38.6%

MOVIE [9] 0.7164 0.9711 1.2249 0.6897 0.4720 7229 -36.4% -25.1% -33.8%
SSIM [6] 0.8422 0.8102 0.9467 0.8344 0.6279 5.874 -45.5% -32.8% -39.2%

MS-SSIM [8] 0.8526 0.7802 0.9174 0.8409 0.6350 11.36 -46.8% -34.6% -40.7%
MOS - - - - - - -66.9% -47.2% -57.1%

jective VQA algorithms emerged in the past decade by ob-
serving how well they predict the subjective scores of com-
pressed video sequences and how well they predict the RD-
gain between HEVC-HM5.0 and H.264-JM18.3. Moreover,
we carry out further subjective tests to exploit the relation-
ship between frame-level and sequence-level subjective qual-
ity, and to investigate special temporal coding artifacts cre-
ated by standard video codecs. This study may help the
video coding community select useful VQA models in their
future validation and comparison of novel video codecs,
may provide new insights about the perceptual aspects of
H.264 and HEVC coding schemes and how they may be fur-
ther improved, and may also help VQA researchers discover
the problems in the current subjective testing methodologies
and objective VQA models and find ways to improve them.

2. TEST OF OBJECTIVE VIDEO QUALITY
ASSESSMENT MODELS

Five existing objective VQA models are being examined,
which include PSNR, the video quality metric (VQM) [5],
the structural similarity index (SSIM) [6, 7] (As in [6], a
preprocessing step of spatial downsampling by a factor of
2 is applied to each frame before the SSIM index is com-
puted), the Multi-Scale SSIM index (MS-SSIM) [8], and the
MOtion-based Video Integrity Evaluation index (MOVIE)
[9]. All five models are well-known in the IQA/VQA and
video coding communities. In the subjective data given in
[2], a total of 72 HM5.0 and JM18.3 compressed video se-
quences were tested, which were generated from 9 original
source video sequences, including 5 Class B sequences of
1080p resolution (1920× 1080) and 4 Class C sequences of
WVGA resolution (854×480). The encoding configuration
of HM5.0 was set as random-access high-efficiency (RA-
HE), and for fair comparison, the JM18.3 configuration was
adjusted accordingly to best match that of HM5.0. No rate
control scheme has been applied to either JM18.3 or HM5.0
encoding. The specific details of coding configurations can
be found in [2]. The subjective test results were recorded in
the form of MOS of each test video sequence.

Seven criteria were used to evaluate each objective VQA
model. These include (1) Pearson linear correlation coeffi-
cient (PLCC), (2) mean absolute error (MAE), and (3) root
mean square (RMS), which are computed after a nonlinear
modified logistic fitting [10] between the MOS values and
the scores given by the objective model. Two rank-order
based evaluation measures, namely (4) Spearman rank-order
correlation coefficient (SRCC) and (5) Kendall rank-order
correlation coefficient (KRCC), between objective and sub-
jective quality scores are also computed, which are inde-
pendent of any fitting function that attempts to align the
scores. The premium performance of objective quality mod-
els is represented by higher PLCC, SRCC, and KRCC, and
lower MAE and RMS values. Since speed is often a ma-
jor concern in real-world applications of VQA models, we
also compared (6) the computational complexities of the
VQA models, which are reported as their relative compu-
tation time normalized by the computation time of PSNR
(this should be considered as only a crude estimate of the
computational complexities of the VQA models because no
algorithm and/or code optimization has been conducted to
accelerate the speed). Finally, (7) the RD-gain of HM5.0
over JM18.3 is estimated for each source video sequence by
comparing the RD curves of HM5.0 and JM18.3, where R
denotes bit-rate and D denotes the distortion measure based
on the specific VQA model and each RD curve is created by
piecewise linear interpolation of the rate and distortion val-
ues of four coded video sequences generated by the same
coding scheme [2]. The average RD-gain of HM5.0 over
JM18.3 is then computed as the average of the RD-gains of
all source videos.

The average performance of the objective models over
all test video sequences are summarized in Table 1, where
the best performances are highlighted with bold face. The
scatter plots of objective scores versus MOSs are shown in
Fig. 1. From Table 1 and Fig. 1, it can be observed that all
four state-of-the-art VQA models clearly outperform PSNR
in terms of PLCC, MAE, MSE, SRCC and KRCC, where
on average MS-SSIM obtains slightly better results than the
other three. On the other hand, VQM and MOVIE are ex-
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Fig. 1. Scatter plots of VQA measure vs. MOS.

tremely expensive in computational cost, while SSIM and
MS-SSIM achieves a much better balance between quality
prediction accuracy and computational complexity. Table 2
reports the paired statistical significance comparison using
the approach introduced in [11], where a symbol “1” de-
notes the objective model of the row is statistically better
than that of the column, “0” denotes that the column model
is better than the row model, and “-” denotes that the two
objective models are statistically indistinguishable.

Table 2. Statistical significance test for PSNR, MOVIE,
VQM, SSIM and MS-SSIM

PSNR MOVIE VQM SSIM MS-SSIM
PSNR - - 0 0 0

MOVIE - - - 0 0
VQM 1 - - - -
SSIM 1 1 - - -

MS-SSIM 1 1 - - -

Perhaps the most surprising results here is in the RD-
gain columns in Table 1 − the five objective VQA models
predict the average RD-gain of HM5.0 against JM18.3 to
be between 33.8% to 40.7% , which largely underestimates
the 57.1% gain obtained from subjective scores. Similar
behaviors are also observed for individual test classes. This
suggests that all objective VQA models are systematically
in favor of H.264 JM18.3 while human subjects tend to pre-

fer HEVC HM5.0. This can also be seen in Fig. 1, where
in all scatter plots, the clusters of HM5.0 and JM18.3 coded
video sequences are visually separated (though with over-
laps), and HM5.0 sequences tends to have higher MOS val-
ues. Fig. 2 provides an example using 1080p “Parkscene”
seuqnece, where we can observe how subjective and objec-
tive video quality measures change as a function of bit rate.
Again, it can be seen that the gap between the HM5.0 and
JM18.3 MOS-rate curves is significantly larger than those
of the PSNR-rate and (MS-SSIM)-rate curves. Similar phe-
nomena had been observed partially in previous studies. In
[3], it was reported that PSNR accounts for 39% rate savings
of HM5.0 over JM18.3, as compared to more than 50% by
human subjective scores. Similar results are also found in
[12]. In [13], the coding performance of HM5.0 and JM16.2
was compared under the RA-HE test conditions over 15 test
sequences in terms of perceptual quality index (PQI) [14],
PSNR and SSIM [6], and the results showed that the pre-
dicted RD-gain by all VQA models are almost the same.

3. SUBJECTIVE STUDY OF SPATIAL AND
TEMPORAL VIDEO QUALITY

To better understand the significant bias of objective VQA
models towards H.264-JM18.3 as opposed to HEVC-HM5.0,
we carried out a series of subjective experiments to inspect
the quality of coded video sequences at both frame and se-
quence levels. Ten compressed sequences (5 by JM18.3
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Fig. 2. Rate-quality comparison of JM18.3 and HM5.0 compressed 1080p “ParkScene” sequence, where the quality measures
are MOS (left), PSNR (middle) and MS-SSIM (right), respectively. The RD-gain of HM5.0 upon JM18.3 computed using
MOS, PSNR, and MS-SSIM are -63.6%, -36.8%, and -39.4%, respectively.
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Fig. 3. Relationship between subjective test results for JM18.3 and HM5.0 coded sequences. Left: sequence-level MOS vs.
average frame-level MOS; middle: sequence-level MOS vs. flickering MOS; right: sequence-level MOS vs. ghosting MOS.

and 5 by HM5.0) were selected and 5 frames were chosen
randomly from each sequence, resulting in totally 50 still
image frames. 17 naı̈ve observers participated in the sub-
jective assessment session. The test method conforms with
ITU-T BT.500 [16]. Absolute categorical rating (ACR) was
adopted to collect the mean opinion score (MOS) which is
the average of subjective opinion from all observers. Four
tests have been carried out. The first test is to assess frame-
level image quality, where the subjects give scores regard-
ing the quality of the 50 individual still image frames. The
second test is on sequence level, where the subjects report
a single score for each test video sequence. In the third and
the fourth tests, the subjects are asked to evaluate the flicker-
ing and ghosting effects of the test video sequences, where
flickering refers to the discontinuities of local average lumi-
nance over time, and ghosting refers to the traces of video
content in previous frames that are remained in the current
frame (often created by the Skip mode in the video codec).

From our subjective test, we have the following obser-
vations. First, there are significant conflicts between frame-
level and sequence-level quality assessment. This can be
seen from the left plot in Fig. 3, where frame-level MOSs
(computed by averaging all still frame MOS values of a se-
quence) and sequence-level MOSs obtained in our subjec-
tive experiment do not correlate well with each other. In
addition, there is a clear tendency that HM5.0 coded videos

obtain higher sequence-level MOSs and lower frame-level
MOSs in comparison with JM18.3. A visual example is
shown in Fig. 4, which shows a still frame extracted from a
JM18.3 and an HM5.0 coded “Horse” sequences. On a high
quality monitor, the JM18.3 frame appears to better preserve
the image details and thus has better quality. The same phe-
nomenon has been observed in all frames throughout the
whole video sequences. By contrast, the sequence-level
MOS of the HM5.0 video is significantly higher than that
of the JM18.3 video. This observation, combined with the
fact that frame-based objective VQA measures often well
predicts frame-level MOS (in our experiment, the SRCC be-
tween still frame MOS and MS-SSIM is 0.8627), provides
an explanation for why objective VQA tends to underesti-
mate sequence-level subjective quality. Second, significant
annoying temporal artifacts may appear in coded video se-
quences that may dominate subjective evaluation of video
quality. We have included flickering and ghosting assess-
ment in our subjective tests. The scatter plots of sequence-
level MOS versus flickering and ghosting are shown in the
middle and right plots of Fig. 3, respectively, where higher
flickering or ghosting MOS indicates less flickering or ghost-
ing effect. From these plots, we observe that JM18.3 coded
sequences have clearly stronger flickering and ghosting ef-
fects than HM5.0 sequences. This is in clear contrast to
the left plot in Fig. 3 and provides strong support of the



Fig. 4. An example of visual comparison between H.264-JM18.3 and HEVC-HM5.0 coded videos. Left: H.264 frame,
PSNR = 28.36dB, SSIM = 0.8012, MS-SSIM = 0.8601. Right: HEVC frame, PSNR = 27.64dB, SSIM = 0.7437, MS-SSIM
= 0.8259. When comparing individual frames, H.264 frame appears to have clearly better visual quality, but when the video
is played at normal speed, the H.264 video receives a significantly lower quality score likely due to strong temporal artifacts.

conjecture that compared with frame-level quality, tempo-
ral artifacts contribute strongly to the overall sequence-level
quality. Third, there is significant spatial and temporal qual-
ity non-uniformity of coded video sequences. Such non-
uniformity is partially predicted by the objective VQA mod-
els (for example, using the SSIM maps) and is more evident
in JM18.3 coded video sequences.

The observations above give us useful insights to ad-
dress several issues in subjective tests. First, the past expe-
rience of the subjects and the context of the subjective ex-
periment need to be better taken into account. Second, ques-
tions may be asked to the subjects about what strategies they
use to make an overall decision on an entire video sequence
that has significant quality non-uniformity over space and/or
time. Third, it is desired to record eye movement in the sub-
jective experiments. The importance is not only to detect
the regions of interest (ROIs) in the video content, but also
to study whether compression artifacts change eye fixations
and how the context (e.g., tasks given to the subjects) af-
fects visual attention− are the subjects trying to understand
the story of the video content or to detect the distortion ar-
tifacts? Previous studies suggest that compression artifacts
generally have little impact on visual attention [15], but is
this still true when extremely annoying artifacts occur?

4. FURTHER DISCUSSIONS

The observations in the current study raise new questions
that need to be answered in the development of objective
VQA models. First, there is a strong need to develop novel
approaches to capture specific temporal artifacts (such as
flickering and ghosting) in compressed video. PSNR, SSIM
and MS-SSIM are completely IQA methods where no inter-
frame interactions are considered. It is not surprising that
temporal artifacts are missing in these models. However,

both VQM and MOVIE consider temporal features, but are
still not fully successful in capturing and penalizing the tem-
poral artifacts. Second, many VQA models such as SSIM
and MS-SSIM generates useful quality maps that indicate
local quality variations over space and time. In the case
of significant spatial and temporal non-uniformity in these
quality maps, how to pool the maps into a single quality
score of the entire video is not a fully resolved problem.
There has been attempts to use non-linear model and tem-
poral hysteresis for temporal pooling [17, 18]. However, our
current test shown in Table 3 indicates that they only lead to
small improvement over MS-SSIM and the large gap be-
tween subjective and objective RD-gain predictions still ex-
ists. Third, it would be useful to incorporate visual attention
models. These attention models may be saliency predictors
based on both low-level and high-level vision features, and
may also be based on detections of severe visual artifacts.

Meanwhile, what we learned from this study may help
us improve the design and implementation of video cod-
ing technologies. It is useful to be aware of and to avoid
certain temporal artifacts such as flickering and ghosting ef-
fects, which may vastly change subjects’ opinions about the
quality of the entire video sequence. Many of these arti-
facts occur when quantization parameters are not carefully
chosen and when Skip mode is selected in low- to mid-
energy regions with slow motion. Moreover, rate control
and rate-distortion optimization (RDO) schemes may be ad-
justed not only to achieve the best average quality over the
whole video sequence, but also to reduce significant quality
fluctuations across both space and time.

In conclusion, our study shows that advanced VQA mod-
els clearly outperform PSNR in predicting the quality scores
given by human subjects. This suggests that the video cod-
ing community and the standard development body may
consider replacing PSNR with perceptually more meaning-



Table 3. The impact of temporal pooling strategies on MS-SSIM method

VQA Model PLCC MAE RMS SRCC KRCC RD-gain (Average)
MS-SSIM [8] 0.8526 0.7802 0.9174 0.8409 0.6350 -40.7%

MS-SSIM with min temporal pooling [17] 0.8670 0.6859 0.8749 0.8645 0.6663 -43.2%
MS-SSIM with temporal hysteresis pooling [18] 0.8544 0.7498 0.9123 0.8467 0.6400 -42.4%

MOS - - - - - -57.1%

ful VQA models in not only the testing but also the devel-
opment phases of novel video codecs. This could lead to
substantial changes in the structural design and system op-
timization of the next generation video codecs. In terms of
RD-gain predictions, however, none of the objective VQA
models aligns well with the subjective test results. We con-
jecture that this may be due to one (or the combination)
of several issues, including ambiguities in subjective test-
ing methodologies, limitations of the current VQA mod-
els in capturing specific types of temporal artifacts (such as
flickering and ghosting), and the lack of good spatiotempo-
ral pooling strategies and both saliency and artifacts based
visual attention models. The current discussions are non-
conclusive but may inspire future improvement in both VQA
and video coding methodologies.
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