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ABSTRACT

Objective quality assessment of asymmetrically distorted stereo-
scopic 3D images is a challenging problem, for which direct simple
combinations of the quality of the left and right views fail to produce
adequate predictions. We carried out a subjective quality assessment
experiment on a database that contains both single-view images and
stereoscopic images with symmetric and asymmetric distortion types
and levels, where the distortion types include noise contamination,
blur and JPEG compression. Our results suggest that simply aver-
aging the quality of the left and right view images well predicts the
quality of symmetrically distorted 3D images, but generates substan-
tial bias when applied to asymmetrically distorted stereoscopic im-
ages. More interestingly, we find that such bias could lean towards
opposite directions, largely depending on the distortion types. We
propose a computational model that accounts for the bias, leading to
significantly improved quality prediction of stereoscopic images.

Index Terms— image quality assessment, stereoscopic image,
3D image, asymmetric distortion, SSIM

1. INTRODUCTION

With the fast development of 3D acquisition, communication, pro-
cessing and display technologies, automatic quality assessment of
3D images and videos has become ever important. Nevertheless, re-
cent process on 3D image quality assessment (IQA) remains limited.
In the literature, a majority of studies have been focused on eval-
uating the extension of existing 2D-IQA methods to stereoscopic
images. These methods can be grouped into two categories based
on whether depth or disparity information is explicitly employed.
In [1, 2], 2D-IQA measures are applied to the left- and right-view im-
ages separately and then combined to a 3D quality score. In [3, 4, 5],
disparity maps between left- and right-views are estimated, followed
by 2D quality assessment of disparity quality, which is subsequently
combined with 2D image quality to produce an overall 3D image
quality score.

However, recent subjective studies suggested that in the case of
symmetric distortion of both views (in terms of both distortion types
and levels), simply averaging state-of-the-art 2D-IQA measures of
both views is sufficient to provide reasonably accurate quality pre-
dictions of stereoscopic images. In particular, in [6], it was shown
that averaging peak-signal-to-noise ratio (PSNR), structural similar-
ity (SSIM) [7] and multi-scale SSIM (MS-SSIM) [8] measurements
of left- and right-views performs equally well or better than the ad-
vanced 3D-IQA models [2, 3, 4]. Similar results were also observed
in [9], where averaging universal quality index (UQI) [10], MS-
SSIM [8] and visual information fidelity (VIF) [11] of both views
all outperformed 3D-IQA models [2, 3, 4, 5].

Compared with the case of symmetric distortions, quality as-
sessment of asymmetrically distorted stereoscopic images is a much
more challenging problem. In [6], it was reported that there is a
large drop in the performance of both 2D-IQA and 3D-IQA mod-
els from quality predictions of symmetrically to asymmetrically dis-
torted stereoscopic images. Previous studies exhibit somewhat con-
flict observations and opinions regarding the effect of asymmetric
distortions. For image blur, evidence in [12] shows that asymmet-
ric blur distorted images is largely dominated by the higher quality
view, a result generally agrees with [13]. For image blockiness, it
was reported in [14] that 3D image quality has a tendency towards
the lower quality view, while in [12], it was claimed that it should be
approximated by averaging the quality of both views. In [13], it was
suggested that the best strategy of asymmetric quality assessment for
compressed images should be content and texture dependent.

Subjective data is essential in understanding the impact of asym-
metric distortion on the perceptual quality of stereoscopic images.
Ideally, we would need a complete set of subjective test on an im-
age database that contains both 2D (single-view) and stereoscopic
3D images, both symmetrically and asymmetrically distorted im-
ages at different distortion levels, as well as both single- and mixed-
distortion images. Existing 3D image quality databases are highly
valuable but limited in one aspect or another. Specifically, IRC-
CyN/IVC 3D Images Database [4], Tianjin University Database [5],
Ningbo University Database Phase II [15], and LIVE 3D Image
Quality Database Phase I [9] only include symmetrically distorted
stereoscopic images. Ningbo University Database Phase I [13] only
includes asymmetrically distorted stereoscopic images. MICT 3D
Image Quality Evaluation Database [16] contains both cases but only
for JPEG compressed images. The most recent LIVE 3D Image
Quality Database Phase II [6] includes both symmetric and asym-
metric cases as well as five distortion types. Unfortunately, 2D-IQA
of single view images are still missing, making it difficult to directly
examine the relationship between the perceptual quality of single-
view and stereoscopic images. In addition, asymmetric distortions
with mixed distortion types are missing in all existing databases,
making it hard to validate the generalization capability of 3D quality
prediction models.

In this study, we carried out a subjective quality assessment ex-
periment on a database that contains both single-view images and
stereoscopic images with symmetric and asymmetric distortion types
and levels, where the distortion types include noise contamination,
blur and JPEG compression. This database allows us to directly ob-
serve the quality prediction performance from single-view to stereo-
scopic images, for which we observe that simply averaging the qual-
ity of both views creates substantial bias on asymmetrically distorted
stereoscopic images and the bias could lean toward opposite direc-
tions, largely depending on the distortion types. Furthermore, we
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propose a model to account for the bias, which not only results in
better quality prediction of stereoscopic images with asymmetric dis-
tortion levels, but also well generalizes to the case of asymmetric
distortions with mixed distortion types.

2. SUBJECTIVE STUDY

Before the subjective experiment, we built an image database cre-
ated from 6 pristine stereoscopic image pairs (and thus their cor-
responding single-view images), all collected from the Middlebury
Stereo 2005 Datasets [17]. Each single-view image was altered by
three types of distortions: additive white Gaussian noise contami-
nation, Gaussian blur, and JPEG compression. Each distortion type
had four distortion levels, where the distortion control parameters
were decided to ensure a good perceptual separation between dis-
tortion levels as reported in Table 1. The single-view images are
employed to generate distorted stereopairs, either symmetrically or
asymmetrically. Altogether, there are totally 78 single-view images
and 330 stereoscopic images in the database. Table 2 categorizes
these images into seven groups with detailed descriptions.

Table 1. Value ranges of control parameters for distortion simulation
Distortion Control Parameter Range

Noise Variance of Gaussian [0.10 0.40]

Blur Variance of Gaussian [2 20]

JPEG Quality parameter [3 10]

Table 2. Categories of test images
Group # of images Description

Group 2D.0 6× 1 Pristine single-view images
Group 2D.1 6× 12 Distorted single-view images

Group 3D.0 6× 1 Pristine stereopairs
Group 3D.1 6× 12 Symmetrically distorted stereopairs

with the same distortion type and
distortion level

Group 3D.2 6× 12 Asymmetrically distorted stere-
opairs with distortion on one view
only

Group 3D.3 6× 18 Asymmetrically distorted stere-
opairs with the same distortion type
but different levels

Group 3D.4 6× 12 Asymmetrically distorted stere-
opairs with mixed distortion types
and levels

To the best of our knowledge, there are two unique features of
the current database when compared with existing publicly available
3D-IQA databases. First, this is the only database that performs sub-
jective test on both 2D and 3D images. The including 2D images
allows us to directly examine the relationship between the percep-
tual quality of stereoscopic images and that of the its single-view
images. This is advantageous against previous studies which do not
have ground truth of 2D image quality but have to rely on an ob-
jective 2D-IQA measure as an estimate. Second, this is the only
database that contains mixed distortion types in asymmetrically dis-
torted images. This provides the potential of a much stronger test on
3D-IQA models on their generalizability, especially those developed
to account for asymmetric distortions of specific distortion types.

(a) Art (b) Books

(c) Dolls (d) Moebius

(e) Laundry (f) Reindeer

Fig. 1. The 6 Pristine Images used in the subjective study. Only the
right-views are shown here.

The subjective test was conducted in the Lab for Image and Vi-
sion Computing at University of Waterloo. The single stimulus con-
tinuous quality scale (SSCQS) protocol was adopted to obtain sub-
jective quality ratings for all of the single-view images and stere-
opairs. The test environment had no reflecting ceiling walls and
floor, and was not insulated by any external audible and visual pol-
lution. An ASUS 27” VG278H 3D LED monitor with NVIDIA 3D
VisionTM2 active shutter glasses is used for the test. The default
viewing distance was 3.5 times the screen height. The details of
viewing conditions are given in Table 3.

Table 3. Viewing conditions of the subjective test
Parameter Value

Subjects Per Monitor 1

Screen Resolution 1920 × 1080

Screen Diameter 27.00”

Screen Width 23.53”

Screen Height 13.24”

Viewing Distance 45.00”

Viewing Angle 29.3◦

Pixels Per Degree 65.5 pixels

Twenty-four naive subjects (14 males, 10 females) − all univer-
sity graduate students − took part in the study. They are aged from



Fig. 2. Customized GUI application for score recording

22 to 45 years old. A 3D vision test was conducted first to verify
their ability to view stereoscopic 3D content and three of them (1
male, 2 females) were rejected and did not continue with the test. As
a result, a total of twenty-one naive subjects (13 males, 8 females)
proceeded to the formal test. Following previous works [18, 19, 20],
the subjects were asked to evaluate four aspects of their 3D viewing
experience, including the perception of 3D image quality (IQ), depth
quality (DQ), visual comfort (VC) and overall 3D quality of expe-
rience (3DQoE). The detailed descriptions of each aspects of visual
experience are elaborated in Table 4.

Table 4. Description of visual experience criteria
Criterion Description

IQ The image content quality without considering 3D
viewing experience

DQ The amount, naturalness and clearness of depth per-
ception experience

VC The comfortness when viewing stereoscopic images

3DQoE The overall 3D viewing experience

Our pilot test showed that one-pass experiment (where a subject
gives 3DIQ, DQ, VC, and 3DQoE scores to each stereoscopic im-
age in one trial) causes severe visual fatigue of the human subjects
within a short period of time. To avoid this problem, we resorted
to a multi-pass approach [20] in the formal test, where within each
pass, the subject only needs to give one of the four scores. The
test was scheduled on two consecutive days for each subject. Day 1
was dedicated to 2DIQ, VC and 3DIQ tests, and Day 2 to DQ and
3DQoE tests. A 3D vision test and a general introduction were given
at the beginning of the whole test, and more specific instructions and
training session were given before each sub-test. Each session is
controlled to be within 20 minutes and sufficient relaxation periods
were given between sessions. Moreover, we found that repeatedly
switching between viewing 3D images and grading on a piece of pa-
per or a computer screen is a tiring experience. To overcome this
problem, we ask the subject to speak out a score between 0 and 10,
and a customized graphical user interface shown in Fig. 2 on another
computer screen is used by the instructor to record the score. All
these efforts were intended to reduce visual fatigue and discomfort
of the subjects and to reduce the interactive effects between different
visual experiences criteria.

The raw 3DIQ scores given by each subject were converted to
Z-scores and the entire data set was rescaled to fill the range from
1 to 100. The mean opinion score (MOS) for each image was then

computed. The rest of the paper focuses on the relationship between
single-view image quality and the 3DIQ scores. More detailed de-
scriptions of our database and analysis of the other aspects of the
subjective experiments will be reported in future publications.

3. 2D-TO-3D IMAGE QUALITY PREDICTION

3.1. Distortion Type Dependency

The main question we would like to ask in the current paper is
how the single-view 2D image quality predicts the 3D image qual-
ity (3DIQ scores in the subjective test), especially for the case of
asymmetric distortions. The most straightforward 2D-to-3D qual-
ity prediction method is to average the MOSs of the left- and right-
view images. Table 5 reports Pearson’s linear correlation coefficient
(PLCC), Spearman’s rank-order correlation coefficient (SRCC) and
Kendall’s rank-order correlation coefficient (KRCC) between 3D-
MOS scores and the average 2D-MOS scores, including the results
for all stereoscopic images, for each test image group, and for each
distortion type. The left column of Fig. 3 shows the corresponding
scatter plots.

From Table 5 and Fig. 3, it can be observed that the best predic-
tion occurs in Group 3D.1, which is the category for symmetrically
distorted 3D images (consistent with the literature [9, 6]). By con-
trast, the PLCC, SRCC and KRCC values drop significantly in other
test groups (corresponding to asymmetrical distortions) as well as
for different distortion types and in the all-image group. The drops
of correlation coefficient values are also reflected in the scatter plots
shown in Fig. 3, where this simple averaging prediction model gen-
erates substantial bias of many stereopairs. Most interestingly, this
bias leans towards opposite directions, largely depending on the dis-
tortion types. In particular, for noise contamination and JPEG com-
pression, average prediction overestimates 3D quality of many im-
ages (or 3D image quality is more affected by the poorer quality
view), while for blur, average prediction often underestimates 3D
image quality (or 3D image quality is more affected by the better
quality view). Furthermore, Table 5 suggests that the worst perfor-
mance occurs in Group 3D.2, where only one view image is distorted
and thus the quality difference between two views is maximized.

It is interesting to compare our observations regarding distortion
type dependency with those published in the literature. For image
blur, it was reported in [12, 13] that the 3D quality is less affected by
the view with lower quality, which is consistent with our result. For
image blockiness, [14] and [12] reported somewhat conflicting re-
sults. The former concluded that the 3D image quality is mainly de-
pendent on the view with lower quality, and the latter suggested that
quality averaging of both views is a better choice. These seemingly
controversial results are well explained by the scatter plot shown in
Fig. 3(a), where the bias of the averaging prediction model increases
with the level of distortions, and thus whether the bias is pronounced
depends on the quality range being investigated.

3.2. 2D-to-3D Quality Prediction Model

The competition between binocular fusion and binocular rivalry [21,
22] provides a potential theory for 2D-to-3D quality prediction.
When the left- and right-view images are sufficiently similar, they
are fused in the visual system to a single percept of the scene, known
as binocular fusion. On the other hand, when the images of the two
views are sufficiently different, instead of the two images being seen
superimposed, one of them may dominate or two images may be
seen alternatively, known as binocular rivalry [21, 22]. Although
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Fig. 3. Scatter plots of 3D image quality MOS score versus pre-
dictions from MOS scores of 2D left- and right-views. Left column,
prediction by averaging the MOS scores of both views; right column,
prediction by the proposed method.

there is a rich literature on binocular fusion and rivalry in biolog-
ical vision science [21, 22] (where simple and ideal visual stimuli
are often used), how to apply the principle to 3D-IQA remains an
active research topic. Since in 3D-IQA we need to work on com-
plicated scenes and distortions, simplifications are essential to create
practical solutions.

Our work is motivated by existing vision studies on binocular
rivalry [23, 24], where it was found that for simple ideal stimuli, an
increasing contrast increases the predominance of one view against
the other. Also note that in complicated scenes the contrast of a sig-
nal increases with its signal strength measured using energy. This
inspires us to hypothesize that the level of view dominance in binoc-
ular rivalry of sterescopic images is monotonically increasing with
the relative energy of the two views.

The diagram of the proposed method is shown in Fig. 4. Let
(Ir,l, Ir,r) and (Id,l, Id,r) be the left- and right-view image pairs
of the reference and distorted stereoscopic images, respectively. We
first create their local energy maps by computing the local variances
at each spatial location, i.e., the variances of local image patches
extracted around each spatial location from the reference or the dis-
torted images are computed, for which a sliding Gaussian window
with standard deviation of 1.5 is employed. The resulting energy
maps are denoted as Er,l, Er,r , Ed,l and Ed,r , respectively. As-
sume that the reference stereopair has perfect quality with strong 3D
effect, where binocular fusion prevails. When at least one of the
single-view images is distorted at some spatial locations, the distor-
tion may affect the consistency between the image structures from
the two views, and thus binocular rivalry prevails. As a result, one
view may dominate the other at any time instance. Based on our
hypothesis, we compute the local energy ratio maps in both views:

Rl =
Ed,l

Er,l
and Rr =

Ed,r

Er,r
. (1)

The energy ratio maps provide useful local information, which may
be combined with the qualities of single-view images to predict 3D
image quality. A pooling stage is necessary for this purpose. To em-
phasize on the importance of high-energy image regions, we adopt
an energy weighted pooling method given by

gl =

∑
Ed,lRl∑
Ed,l

and gr =

∑
Ed,rRr∑
Ed,r

, (2)

where the summations are over the full energy and ratio maps. The
weights assigned to the left- and right-view images are then given by

wl =
g2l

g2l + g2r
and wr =

g2r
g2l + g2r

. (3)

Finally, the overall prediction of 3D image quality is calculated by a
weighted average of the left-view and right-view image quality:

Q3D = wlQl + wrQr , (4)

where Ql and Qr denote the 2D image quality of the left- and right-
views, respectively. In the current paper, Ql and Qr are the MOS
scores obtained from our subjective experiments on the 2D images
in Group 2D.0 and Group 2D.1 image sets.

3.3. Validation

The proposed 2D-to-3D quality prediction model is tested on all 3D
images in our database. The PLCC, SRCC and KRCC values be-
tween 3D-MOS and the predicted Q3D value for each category and



Table 5. Performance of 2D-to-3D quality prediction models: 2D-MOS with direct average and 2D-MOS with proposed weighting
PLCC SRCC KRCC

Method direct average proposed weighting direct average proposed weighting direct average proposed weighting

All 3D 0.8835 0.9590 0.8765 0.9484 0.7161 0.8162

Group 3D.1 0.9801 0.9801 0.9657 0.9657 0.8482 0.8482

Group 3D.2 0.6247 0.9463 0.5433 0.9374 0.4406 0.7915

Group 3D.3 0.9661 0.9775 0.9164 0.9471 0.7597 0.8034

Group 3D.4 0.9222 0.9660 0.8271 0.9413 0.6390 0.7962

Noise 0.9305 0.9761 0.9370 0.9474 0.8052 0.8137

Blur 0.9564 0.9736 0.9707 0.9714 0.8562 0.8632

JPEG 0.9188 0.9675 0.8865 0.9494 0.7508 0.8247

Mixed 0.9222 0.9660 0.8271 0.9413 0.6390 0.7962

Table 6. Performance of 2D-to-3D quality prediction models
PLCC SRCC KRCC

All Symmetric Asymmetric All Symmetric Asymmetric All Symmetric Asymmetric

2D-MOS with
0.8835 0.9801 0.8572 0.8765 0.9657 0.8471 0.7161 0.8482 0.6780

direct average

2D-MOS with
0.9590 0.9801 0.9544 0.9484 0.9657 0.9405 0.8162 0.8482 0.8038

proposed weighting

You [3] 0.5746 0.6416 0.5549 0.5968 0.7517 0.5705 0.4351 0.5615 0.4174
Benoit [4] 0.6276 0.7776 0.6767 0.5435 0.6588 0.5751 0.3946 0.4921 0.4223
Yang [5] 0.6984 0.8233 0.7065 0.6106 0.6668 0.6108 0.4428 0.4821 0.4436

each distortion type are given in Table 5. The corresponding scatter
plots are shown in the right column of Fig. 3.

From Table 5 and Fig. 3, it can be observed that the proposed
model outperforms the direct averaging method in almost all cases,
and the improvement is most pronounced in the case of strong asym-
metric distortions (Group 3D.2) or when all test images are put to-
gether (All 3D image case). Most importantly, for different distor-
tion types, although the direct averaging method produces different
levels of quality prediction biases towards different directions, the
proposed method, which does not attempt to recognize the distortion
types or give any specific treatment for any specific distortion type,
removes or significantly reduces the prediction biases for all distor-
tion types. Moreover, as mentioned earlier, the mixed distortion case
provides the strongest test on the generalization ability of the model,
for which the proposed method maintains consistent improvement.

To the best of our knowledge, no previous method uses 2D
single-view MOS values to predict 3D-MOS value, and thus straight-
forward comparison with existing methods is not possible. The re-
sults of some state-of-the-art 3D-IQA approaches [3, 4, 5] are shown
in Table 6. Here the main observation is that there is a large per-
formance drop in all these existing objective methods from cases
of symmetric to asymmetric distortions. Clearly, the drop is much
smaller in the proposed method, which leads to the most significant
performance gain in the asymmetric distortion case.

4. CONCLUSION

The major contributions of the current paper are as follows: First,
we created a new subjective 3D-IQA database that has two unique
features (the inclusion of both 2D and 3D images, and the inclusion
of mixed distortion types). Second, we observe strong distortion
type dependent bias when using direct averaging 2D image qual-

ity of both views to predict 3D image quality. Third, we propose
a computational model for 2D-to-3D quality prediction, which does
not perform any distortion type detection or provides any distortion
type specific treatment, significantly reduces the quality prediction
bias. The new 3D-IQA database provides many opportunities of our
future work, which includes localized 2D-to-3D quality prediction,
and objective quality assessment of a more complete set of 3D visual
experience.
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