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Abstract

We propose a novel 3D face recognition algorithm based
on facial range image matching using the complex wavelet
structural similarity metric (CW-SSIM) metric. Compared
with many existing 3D surface matching methods, CW-
SSIM is computationally efficient and is robust to small geo-
metrical distortions. Using a data set that contains 360 3D
face models of 12 subjects, we tested the performance of
the proposed method and compared it with existing 3D sur-
face matching based face recognition algorithms. Verifica-
tion and identification performance of each algorithm was
evaluated by means of the receiver operating characteris-
tic curve and the cumulative match characteristic curve.
Among the algorithms tested, the proposed algorithm based
on the CW-SSIM resulted in the best overall performance
with an equal error rate of 9.13% and a rank 1 recognition
rate of 98.6%, significantly better than all the other algo-
rithms. Besides the introduction of a novel approach for
3D face recognition, this is also the first attempt to expand
the application scope of complex wavelet domain similarity
measure to range image matching in general.

1. Introduction

Numerous present-day applications including access
control, surveillance, criminal justice, and human computer
interaction require automatic human identification. Face
recognition is one of the most widely investigated biomet-
ric techniques for human identification. Face recognition
systems are advantageous in that they require less user
co-operation than some of the other biometric systems
(e.g., fingerprint and iris recognition).

Although human beings have evolved to be significantly
adept at recognizing faces, it is a difficult task to automate.

Despite considerable progress in two dimensional (2D) face
recognition systems based on intensity images, they are
inadequate for robust face recognition. Their performance
is reported to decrease significantly with varying facial
pose and illumination [13]. Three dimensional (3D) face
recognition systems are less sensitive to changes in ambient
illumination conditions than 2D systems [5]. Three dimen-
sional face models can also be rigidly transformed to a
canonical pose and location. Hence, considerable research
attention is now being directed toward 3D face recognition.

In the computer vision literature, a 3D object that
cannot be recognized as either planar or naturally quadric
is referred to as a ‘free form’ object. The surface of the
human face can be regarded as an example of a free form
object. Techniques based on free form surface matching
are often employed for 3D face recognition. In such
techniques, the surface of a human face is represented by
means of a collection of points in 3D space and referred
to as a ‘point cloud’. Correspondence between points on
the two surfaces is established and the surfaces are alinged.
Similarity between the two surfaces is judged by means of
a distance metric.

Alternatively, range images of 3D face models in a
canonical frontal pose can be generated, and similarity
between the two images is established by means of an
image similarity metric. A range image, also referred to as
a 2.5D surface or depth map, consists of (x, y) points on
a regular rectangular grid. Each (x, y) point is associated
with a z value or depth of the point on the surface closest to
an acquisition device.

For 3D face recognition systems based on surface
matching, the similarity/dissimilarity score between an
incoming ‘probe’ face and each face in a ‘gallery,’ is em-
ployed to index the gallery face closest in appearance to the
probe face. Hence, the performance of 3D face recognition
systems that employ 3D facial surface matching critically
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depends on the accuracy and robustness of the metric
employed for surface matching.

In this study we propose a novel method for 3D face
recognition based on facial surface matching using the
recently developed image similarity metric called the com-
plex wavelet structural similarity metric [20]. CW-SSIM
was origionally proposed to measure the visual similarity
between natural images, but, to the best of our knowledge,
has never been used for comparing range images. We
demonstrate that the performance of the proposed method
is superior in terms of recognition accuracy and computa-
tional efficiency than some existing techniques for 3D facial
surface matching. These include approaches that employ
the mean squared error (MSE) between corresponding
depth (z) values, the closest point MSE, and the Hausdorff
distance.

2. Surface similarity metrics

In this section we review previous work related to 3D
face recognition based on surface matching. The MSE met-
ric and the Hausdorff distance have been employed exten-
sively in 3D face recognition algorithms based on surface
matching. We provide definitions of these metrics along
with that of the CW-SSIM metric.

2.1. Mean squared error

A simple method for comparing two registered range im-
ages is by means of the sum of the squares of the Euclidean
distances between depth (z) values at corresponding im-
age locations. This simple metric can be referred to as the
‘depth MSE’. For two range images A and B, both of size
N × M pixels, the depth MSE (MSEz) can be calculated
as

MSEz =
1

NM

M∑
i=1

N∑
j=1

(zA(i, j)− zB(i, j))2. (1)

This metric has been employed in previous studies to
quantify the distance between coarsely registered range im-
ages of 3D human faces [3, 6, 7]. Although this metric is
simple to compute and provides tractable solutions when
employed in optimization problems, it has been shown to
perform poorly for perceptual image quality assessment and
pattern recognition problems [19, 16].

Another version of the MSE metric called the ‘closest
point MSE’ has also been employed for 3D facial surface
matching. In order to calculate this metric, each 3D sur-
face is regarded as a point cloud. To compute the clos-
est point MSE (MSECP ) between two point clouds A =
{a1, a2, a3 . . . aM} and B = {b1, b2, b3 . . . bN}, containing

M and N points, respectively, we first compute the directed
MSECP from set A to set B as

MSECP (A,B) =
1
M

M∑
i=1

D(ai, bi′), (2)

where D is the square of the Euclidean distance between
point ai ∈ A and bi′ ∈ B that is closest to the point ai.
The directed MSECP (B,A) is similarly calculated and the
undirected MSECP between the two surfaces is defined as

MSECP = max(MSECP (B,A),MSECP (B,A)).
(3)

In numerous previous 3D face recognition studies based
on surface matching, the directed MSECP was employed
as the objective function to be minimized in an itera-
tive procedure to align two surfaces as closely as possible
[10, 5, 9, 12]. The residual directed MSECP distance be-
tween the two surfaces at the completion of the iterative pro-
cedure is used as a measure of similarity between the two
registered surfaces for recognition.

2.2. Hausdorff distance

The Hausdorff distance is a measure of similarity be-
tween two point sets [4]. The procedure to calculate the
Hausdorff distance is similar to that of the MSECP met-
ric. In order to compute the Hausdorff distance (H) be-
tween two point clouds A = {a1, a2, a3 . . . aM} and B =
{b1, b2, b3 . . . bN}, containing M and N points, respec-
tively, we first calculate the directed Hausdorff distance
h(A,B) from set A to set B as

h(A,B) = max
a∈A

D(ai, bi′) (4)

where D is the square of the Euclidean distance between
point ai ∈ A and the point bi′ ∈ B that is closest to the
point ai. The directed Hausdorff distance from set B to
set A (h(B,A)) is similarly calculated and the undirected
Hausdorff distance between the two point sets is defined as

H = max(h(A,B), h(B,A)). (5)

A variant of the Hausdorff distance is the partial Haus-
dorff distance. For calculating the partial directed Haus-
dorff distance from point set A to B, the distances of all
points ai ∈ A to their closest points in B are sorted in as-
cending order, and the P th distance in the ordered set quan-
tifies the directed partial Hausdorff distance, i.e.,

hP (A,B) = P th
a∈AD(ai, bi′). (6)

We can similarly calculate hQ(B,A), and the undirected
partial Hausdorff distance between the two point sets is then
defined as

H = max(hP (A,B), hQ(B,A)). (7)



The partial Hausdorff distance has the advantage of
being robust to outliers produced by noise and occlusions.
However, its performance depends on the selection of
optimal values for the heuristic parameters P and Q that
quantify the extent of overlap between the two point sets.
Both the Hausdorff distance and the partial Hausdorff
distance have been employed previously for measuring the
similarity between coarsely alinged 3D face models [1] and
as objective functions in an iterative procedure to rigidly
align two facial surfaces as closely as possible [11, 15].
Lee and Shim employed a modified Hausdorff distance
proposed by Dubuisson and Jain [2], which is closely
related to the MSECP for facial surface matching [8].

2.3. CW-SSIM

Recently, Wang et al. proposed the structural similarity
metric (SSIM) for predicting human preferences in evaluat-
ing image quality [18, 19]. The utility of the metric is not
limited to image quality assessment as it can also be em-
ployed for pattern recognition tasks. SSIM takes into con-
sideration the local structure and variation about a pixel. It
compares structural information, independent of the mean
intensity and contrast of the images. It operates in the spa-
tial domain and has been shown to provide good predictions
of perceptual image quality for a variety of image distor-
tions [19].

SSIM was extended to the complex wavelet domain re-
sulting in the complex wavelet structural similarity metric
[20]. CW-SSIM was demonstrated to be more robust than
MSE and SSIM at recognizing hand written digits [20].

CW-SSIM uses the phase information of coefficients in
the complex wavelet domain. It is based on the idea that
the structural information of image features is mostly con-
tained in the relative phase patterns of wavelet coefficients
[20]. To compute the CW-SSIM metric for two images,
their complex wavelet transforms are first computed. Let
cA = {cA,i|i = 1, ..., N} and cB = {cB,i|i = 1, ..., N}
be the two sets of coefficients extracted at the same spatial
location in the same wavelet subbands of the two images
being compared, respectively. The CW-SSIM metric is de-
fined as

S̃(cA, cB) =
2 |

∑N
i=1 cA,i c∗B,i|+ K∑N

i=1 |cA,i|2 +
∑N

i=1 |cB,i|2 + K
, (8)

where c∗ denotes the complex conjugate of c and K is a
small positive constant. The CW-SSIM index ranges from a
value of 0 to 1, where 1 denotes perfect similarity between
two images. A CW-SSIM similarity score s can be con-
verted to a distance measure d =

√
2(1− s).

For computing the MSECP and the Hausdorff distance,
correspondence between pairs of points on the two surfaces

is built by performing an exhaustive search procedure for
closest points. This has a high computational complexity of
O((NM)2) for a pair of range images each of size N ×M
pixels. This cost can become prohibitive for real-time 3D
face surface matching using high resolution data. The com-
putational complexity of the CW-SSIM metric on the other
hand is much lower (O(MN log2 MN)) as it involves cal-
culating complex wavelet coefficients of range images using
the FFT algorithm.

The MSECP and Hausdorff distance metrics are sensi-
tive to alignment between the models being compared. For
example, if the models are misaligned, for two points far
apart on one surface, their corresponding closest points on
the other surface may be very close to each other or may
even be the same point. This can lead to erroneous results.
In contrast, CW-SSIM is robust to small geometric distor-
tions of the image including small changes in scale, small
translations and small rotations [20].

In this study we investigate a novel 3D face recognition
algorithm that employs the CW-SSIM metric to compare
range images of 3D face models that are coarsely registered.
We compare the performance of this metric to the MSEz ,
MSECP and partial Hausdorff distance metrics.

3. Materials and methods

Three dimensional face models for the study were
acquired by an MU-2 stereo imaging system by 3Q Tech-
nologies Ltd. (Atlanta, GA). The system simultaneously
acquires both shape and texture information. The data
contained 360 models of 12 subjects. It was partitioned into
a gallery set containing one image each of the 12 subjects
with a neutral expression. The probe set contained 348
images of the gallery subjects with a neutral or an arbitrary
expression. The probe set contained 29 range images of
each subject.

Face models were rigidly transformed to frontal orien-
tation using an iterative procedure. Range images were
constructed by orthographic projection of the 3D models
onto a regularly spaced rectangular grid. The tip of the
nose of each model was placed approximately at the center
of the image. It should be noted that face surfaces in this
study were only coarsely registered by virtue of being in
a canonical frontal pose and location. Additional steps to
finely align pairs of face surfaces were not performed.

The range images were of size 751 × 501 pixels with a
resolution of 0.32 mm in the x, y, and z directions. Range
images were median filtered with a square window of
size 3 × 3 pixels to remove spike noise, interpolated via a
process of cubic interpolation to remove large holes and
smoothed by applying a Gaussian window with σ = 1 of
size 7 × 7 pixels. Figure 1 presents example range images
employed for the study after the preprocessing steps had



Figure 1. The figure shows examples of the
range images that were employed for the
study. The images have been preprocessed
to remove noise and holes. The two images
in the top row are of the same subject.

been applied.
We implemented four 3D face recognition algorithms

based on facial surface matching. The first one employed
the CW-SSIM metric to obtain similarity scores between
pairs of range images that were converted into distance
values. To implement the CW-SSIM index, we first decom-
posed the range images using a complex version [14] of a
6-scale, 16-orientation steerable pyramid wavelet transform
[17]. This is a type of redundant wavelet transform that
avoids aliasing in the subbands. The CW-SSIM indices
were then computed locally in the complex wavelet domain
using a sliding window of size 7× 7 pixels.

For the second algorithm, distances between pairs of
range images were obtained using the MSEz metric. For
the third and the fourth algorithms, 3D faces were regarded
as point clouds and distances between pairs of point clouds
were quantified by (a) the MSECP distance, and (b) the
partial Hausdorff distance with P = Q = 0.9. In order to
reduce the computation time of calculating the MSECP

and Hausdorff distances to a tractable amount, we reduced
the size of the range images to 10% of their original size.

Verification performance of the four face recognition
algorithms was evaluated using the receiver operating
characteristic (ROC) methodology. The equal error rate
(EER) and the area under the ROC curve (AUC) for each
algorithm was noted. Identification performance was
evaluated by means of a cumulative match characteristic
(CMC) curve and the rank 1 recognition rate (RR) was

Figure 2. CMC curves for the identification
performance of 3D face recognition algo-
rithms based on surface matching that em-
ploy different metrics.

observed. The 95% confidence intervals for each observed
quantity was obtained by applying a procedure of bootstrap
sampling to the outputs of each algorithm. Performance
of each algorithm was evaluated separately for the entire
probe set, for neutral probes only and for expressive probes
only.

4. Results

Equal error rates, AUC values and rank 1 recognition
rates of the four 3D face recognition algorithms are pre-
sented in Table 1. ROC curves of the four 3D face recogni-
tion algorithms are presented in Figure 3. The CMC curves
are presented in Figure 2.

The proposed algorithm that employed CW-SSIM for
matching 3D facial range images, performed considerably
better at identifying human subjects, than the algorithms
based on the other metrics. It had a rank 1 RR = 98.6%,
CI = [97.1 99.7] for all probe images. Among the
other 3D facial surface matching techniques that were im-
plemented, the overall identification performance of the al-
gorithm that used MSEz was slightly better than the one
that used the partial Hausdorff distance metric (Figure 2).
The algorithm that employed the MSECP metric for sur-
face matching performed the worst (rank 1 RR = 63.2%
for all probes).

Analogous to the identification performance, the veri-
fication performance of the algorithm based on the CW-
SSIM metric was superior to all the other algorithms with
EER = 9.13%, CI = [7.71 10.5] for all probes (Fig-



Figure 3. ROC curves depicting the verifica-
tion performance of 3D face recognition al-
gorithms based on surface matching that em-
ploy different metrics.

ure 3). AUC values of the CW-SSIM algorithm for both
neutral and expressive probes was significantly lower than
the AUC values for the other algorithms (Table 1). The
performance of algorithms that employed the MSEz or
the partial Hausdorff distance were not statistically signif-
icantly different, with EER = 17.7% and EER = 16%,
respectively, for all probes. Their AUC values for all probes
were also not statistically significantly different (Table 1).
The highest EER of 19.5% for all probe images was ob-
served for the algorithm that employed the MSECP met-
ric.

Overall, the proposed algorithm based on the CW-SSIM
metric for matching 3D facial range images performed sig-
nificantly better than the existing 3D facial surface matching
algorithms based on the MSEz , MSECP and Hausdorff
distance.

5. Discussion and conclusions

In this paper we proposed a novel 3D face recognition
algorithm based on range image matching using the CW-
SSIM metric. We demonstrated that the proposed algorithm
is more accurate and robust than some existing face recogni-
tion algorithms. The range images that we employed in this
study contained 3D models that were only coarsely regis-
tered by placing 3D models in a canonical position. The
success of the CW-SSIM metric for matching such images
can be attributed in part to the fact that CW-SSIM is robust
to small geometric distortions including small translations
and rotations [20]. Furthermore, the metric is tailored to

capture the local structure about a pixel irrespective of the
local contrast or luminance values.

Not only is the CW-SSIM metric more accurate at recog-
nizing faces, it also introduces substantial savings in com-
putation time for a 3D face recognition system. Firstly,
computing CW-SSIM between a pair of range images/3D
models is computationally much less expensive than com-
puting either the MSECP or the Hausdorff distance be-
tween a pair 3D models. Secondly, since CW-SSIM is ro-
bust to small image translations and rotations, it does not
require that every time a probe is presented to the gallery, it
be finely registered to every model in the gallery before the
metric can be reliably computed as is the case with some
existing 3D facial surface matching techniques [9, 15].

Although in this study the similarity between 3D facial
surfaces was quantified using the CW-SSIM metric, the re-
sults are not limited only these surfaces. The study points
towards the potential applicability of the CW-SSIM metric
to other 3D pattern matching tasks as well. One limitation
of the technique however, is that in its current form, the met-
ric can only be applied to range images. Hence for match-
ing 3D objects, range images of coarsely registered objects
would first have to be created.

In conclusion, we proposed a novel algorithm for 3D
face recognition based on range image matching using the
CW-SSIM metric. The algorithm was observed to be more
accurate, robust and efficient than some existing 3D face
recognition algorithms that employ 3D surface matching.
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