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ABSTRACT

With the remarkable growth of adaptive streaming media
applications, especially the wide usage of dynamic adaptive
streaming schemes over HTTP (DASH), it becomes ever more
important to understand the perceptual quality-of-experience
(QoE) of end users, who may be constantly experiencing
adaptations (switchings) of video bitrate, spatial resolution,
and frame-rate from one time segment to another in a scale of
a few seconds. This is a sophisticated and challenging problem,
for which existing visual studies provide very limited guidance.
Here we build a new adaptive streaming video database and
carry out a series of subjective experiments to understand
human QoE behaviors in this multi-dimensional adaptation
space. Our study leads to several useful findings. First, our
path-analytic results show that quality deviation introduced
by quality adaptation is asymmetric with respect to the
adaptation direction (positive or negative), and is further
influenced by the intensity of quality change (intensity),
dimension of adaptation (type), intrinsic video quality (level),
content, and the interactions between them. Second, we find
that for the same intensity of quality adaptation, a positive
adaptation occurred in the low-quality range has more impact
on QoE, suggesting an interesting Weber’s law effect; while
such phenomenon is reversed for a negative adaptation. Third,
existing objective video quality assessment models are very
limited in predicting time-varying video quality.1
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1 The subjective database is available online at https://ece.uwaterloo.
ca/∼zduanmu/acmmm2017qoe/
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1 INTRODUCTION

In the past decade, there has been a tremendous growth in
streaming media applications, especially the wide usage of
dynamic adaptive streaming schemes over HTTP (DASH),
thanks to the fast development of network services and the
remarkable growth of smart mobile devices. Aiming to provide
a good balance between the fluent experience and the quality
of videos for better quality-of-experience (QoE), DASH video
player at the client adaptively switches among the available
streams by varying video bitrate, spatial resolution, and
frame-rate based on various factors, including playback rate,
buffer condition, and instantaneous throughput [19].

Despite the widespread deployment of adaptive streaming
technology, our understanding of human QoE behaviors in
this multi-dimensional adaptation space remains rather lim-
ited. Traditional adaptive bitrate selection algorithms ignore
the impact of quality adaptations [1], leading to suboptimal
performance. For example, incautious quality adaptation de-
cisions may even result in a QoE as bad as stalling events [11].
To make efficient use of adaptive streaming technology, it is
important to thoroughly understand the impact of quality
adaptation in the end-users’ QoE.

Since the human visual system (HVS) is the ultimate
receiver of streaming videos, subjective evaluation is the most
straightforward and reliable approach to evaluate the users’
QoE of streaming videos. Traditional subjective experiments
investigate the impact of quality adaptation by varying the
temporal video bitrate distributions in a constant average
bitrate contour as illustrated in Fig. 1 and Fig 2. Typical
conclusions include 1) the correlation between the intensity
of quality adaptation and the degradation in QoE and 2) the
preference of positive over negative adaptations. However,
this approach is problematic for two reasons. First, the HVS
is complex and highly nonlinear. Perceptual quality generally
exhibits a concave relationship with respect to the bitrate [25].
Therefore, it is unclear whether the lower rating of a video
sequence with a higher bitrate variance is a consequence of
quality adaptations or the lower average quality itself. For
example, in Fig. 1, two video sequences have the same average
bitrate but different temporal bitrate distributions. It is easy
to show that the average perceptual quality of Sequence I
𝑄(𝑟1)+𝑄(𝑟3)

2
is lower than that of Sequence II 𝑄(𝑟2). Thus,

the worse QoE of Sequence I does not necessarily suggest
that subjects are annoyed by quality adaptation. Similar
conclusions can be drawn for other encoding configurations
such as quantization parameter (QP), spatial resolution, and
temporal resolution [13]. Second, in subjective video quality
assessment, scenes at the end of a sequence tend to have a
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Figure 1: Constant bitrate contour experiment fails
to differentiate the effect of quality adaptation and
the overall intrinsic quality of multiple video seg-
ments.

stronger impact on QoE, a phenomenon known as the recency
effect [6]. Thus, the worse quality of Sequence III in Fig. 2
may be a consequence of the recency effect rather than the
quality adaptation direction. In summary, we argue that both
ambiguities equivocate the validity of conclusions drawn from
existing subjective studies.

In this work, we carry out three meticulously designed
experiments to resolve the confounding factors and explore
the space of quality adaptations. In Experiment I, we study
the quality of short video segments (4-second) at various
compression levels, spatial resolutions, and frame rates. In
Experiment II, we concatenate the 4-second segments of the
same content from Experiment I into long video sequences
(8-second) to simulate quality adaptation events in adaptive
streaming. Subjective user study is performed to collect sep-
arate opinions of the two short consecutive video segments
after watching the whole video sequence. In Experiment III,
subjects provide a single score to reflect their overall QoE
on the concatenated video sequences. From the experimental
results, we empirically show that quality adaptation alters
the perceived quality of the second video segments, which
consequently influences the overall QoE. More specifically,
the intensity of quality change (intensity), dimension of adap-
tation (type), intrinsic video quality (level), content, and
the interactions between them are influencing factors of per-
ceptual quality deviation introduced by quality adaptation.
Interestingly, we find that positive quality adaptation exhibit-
s a Weber’s law effect [2] similar to that observed in many
other psychophysical test such as the perception of audio and
visual contrast, but the effect is less significant for negative
adaptations. Last, existing objective video quality assessment
(VQA) models are very limited in predicting the time-varying
video quality. All of these findings have significant implica-
tions on the future development of objective QoE models
and QoE-driven adaptive video streaming schemes.

2 RELATED WORK

A significant number of subjective QoE studies have been
conducted to understand the perceptual experience of time-
varying video quality. Two excellent surveys on subjective
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Figure 2: Constant bitrate contour experiment con-
founds the effect of quality adaptation direction with
the recency effect.

QoE studies can be found in [18] and [4]. Here we only provide
a brief overview.

Zink et al. [28, 29] made one of the first attempts to
measure the perceptual experience of scalable videos. By
investigating videos of similar average peak signal-to-noise
ratio (PSNR) with different variances, they pointed out that
the frequency and intensity of quality adaptations influence
the perceived quality and should therefore be kept small. By
experimenting with more video content, Moorthy et al. [11]
and Liu et al. [9] came to the same conclusion that gradual
quality variations are preferred. Moorthy et al. [11] confirmed
the recency effect [6] in adaptive streaming, a phenomenon
that can also described as “all is well if end is well” [4]. Ni
et al. [12] investigated the influences of compression level,
spatial resolution, and frame-rate adaptations on QoE of
scalable coded videos. Besides similar conclusions, the authors
also found that spatial and temporal resolution adaptations
influence QoE in a content-dependent fashion. However, all
above mentioned subjective experiments based on constant
bitrate contour design ignores the nonlinear perception of
video quality.

To overcome the limitations of the constant encoding con-
figuration contour design, Rehman et al. [15] and Talens-
Noguera et al. [20] investigated how subjects react to a video
consisting of multiple video clips that have significantly dif-
ferent perceptual quality. However, the authors still failed to
answer whether quality adaptation itself affects QoE because
the test procedure confounded the influence of switching
and the recency effect, as exemplified in Fig. 2. Furthermore,
the scope of the studies was limited to compression level
adaptation.

Several other subjective studies [5, 7, 8, 10, 17, 21, 24] have
been conducted without variable control, mainly towards
identifying influencing factors of QoE and benchmarking
adaptive bitrate selection algorithms. Interestingly, although
many investigators agreed that negative quality adaptation
is considered annoying, they do not agree upon how positive
quality adaptation affects QoE. Three different theoretical
positions have been put forth regarding to the influence of
positive adaptation on QoE: positive adaptation introduces
reward [5, 11], penalty [7, 17, 24], or no effect [8]. Furthermore,
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Figure 3: Snapshots of reference video sequences.

Table 1: Characteristics of reference videos. SI: spa-
tial information. TI: temporal information. Higher
SI/TI indicates higher spatial/temporal complexity.

Index Name SI TI Description

I 3dPrinter 81 67 Indoor scene, smooth motion
II Armenchik 30 33 Human, smooth motion
III Chicago 108 30 Architecture, high motion
IV FightForGlory 17 33 Human, average motion
V Fruits 45 32 Plants, smooth motion
VI MtTakao 95 72 Natural scene, average motion
VII Navara 31 41 Transportation, smooth motion
VIII News 76 8 News, smooth motion
IX SplitTrailer 58 48 Movie, smooth motion
X StreetDance 58 19 Sport, high motion
XI Sunrise 64 56 Natural scene, high motion
XII WildAnimal 77 49 Animal, average motion

the results of the experiments are not directly applicable to
develop and validate computational models of time-varying
video quality.

In summary, all of the above studies suffer from one or
more of the following limitations: (1) the datasets are of in-
significant size; (2) multi-dimensional adaptations commonly
used in practice are not presented; and (3) the datasets are
not available to the public (except for the LIVE Mobile VQA
database [11]). Realizing the need for an adequate and more
relevant resource, we construct a new publicly available data-
base aiming for broader utility for modeling and analyzing
time-varying video quality.

Table 2: Encoding ladder of video sequences

Representation Resolution QP fps

𝑄1 1920×1080 48 30
𝑄2 1920×1080 ≈ 40 30
𝑄3 1920×1080 32 30
𝑆1 480×270 32 30
𝑆2 768×432 32 30
𝑇1 1920×1080 32 5
𝑇2 1920×1080 32 10

3 EXPERIMENT DESIGN

3.1 Video Database Construction

A video database of 12 pristine high-quality videos of size
1920× 1080 and frame rate of 30 frames per second (fps) are
selected to cover diverse content, including humans, plants,
natural scenes, news, and architectures. The detailed speci-
fications are listed in Table 1 and screenshots are shown in
Fig. 3. Spatial information (SI) and temporal information
(TI) [23] that roughly reflect the complexity of video content
are also given in Table 1. Apparently, the video sequences
are of diverse spatio-temporal complexity and widely span
the SI-TI space. An 8-second video segment [3] is extracted
from each source video, which is further partitioned into two
non-overlapping 4-second segments, referred to as short seg-
ments (SS). We encode SS into 7 representations with H.264
encoder according to the encoding ladder shown in Table 2,
where three compression levels, spatial resolutions, and frame
rates are employed. A small-scale internal subjective test is
conducted to divide the 7 representations into 3 sets {𝑄1, 𝑆1,
𝑇1}, {𝑄2, 𝑆2, 𝑇2}, and {𝑄3} corresponding to low-, medium-
, and high-quality levels, respectively. To simulate quality
adaptation events in adaptive streaming, we concatenated
two consecutive 4-second segments with different representa-
tions from the same content into an 8-second long segment.
We denoted the concatenated long segments by LS. Table 3
lists the quality adaptation patterns, from which we observe
a diversity of adaptation intensities and types. Furthermore,
to better exploit the space of adaptations, three types of
multi-dimensional adaptations (𝑄-𝑆, 𝑄-𝑇 , and 𝑆-𝑇 ) are also
presented in the database. As a result, a total of 168 SS and
588 LS are included in the database.

3.2 Subjective User Study

Our subjective experiments generally follow the absolute
category rating (ACR) methodology, as suggested by the
ITU-T recommendation P.910 [23]. Although single-stimulus
continuous quality evaluation (SSCQE) [23] is designed for
continuously tracking instantaneous video quality over time,
it is not adopted for the following reasons. First, human
subjects are unlikely to evaluate video quality on a per frame
basis in practice, discounting the instantaneous quality varia-
tions between frames within a scene. Second, in our database,
the same coding configuration and parameters are applied to
the full duration of each scene, which is roughly constant in



Table 3: Adaptation types. Q-Q: compression level adaptation; S-S: spatial resolution adaptation; T-T: tem-
poral resolution adaptation; Q-S: compression level and spatial resolution adaptation; Q-T: compression level
and temporal resolution adaptation; and S-T: spatial resolution and temporal resolution adaptation.

Adaptation Adaptation intensity
type ∆Q=-2 ∆Q=-1 ∆Q=0 ∆Q=1 ∆Q=2

Q-Q 𝑄3𝑄1 𝑄2𝑄1, 𝑄3𝑄2 𝑄1𝑄1, 𝑄2𝑄2, 𝑄3𝑄3 𝑄1𝑄2, 𝑄2𝑄3 𝑄1𝑄3

S-S 𝑄3𝑆1 𝑆2𝑆1, 𝑄3𝑆2 𝑆1𝑆1, 𝑆2𝑆2 𝑆1𝑆2, 𝑆2𝑄3 𝑆1𝑄3

T-T 𝑄3𝑇1 𝑇2𝑇1, 𝑄3𝑇2 𝑇1𝑇1, 𝑇2𝑇2 𝑇1𝑇2, 𝑇2𝑄3 𝑇1𝑄3

Q-S – 𝑄2𝑆1, 𝑆2𝑄1 𝑄1𝑆1, 𝑆1𝑄1, 𝑄2𝑆2, 𝑆2𝑄2 𝑄1𝑆2, 𝑆1𝑄2 –
Q-T – 𝑄2𝑇1, 𝑇2𝑄1 𝑄1𝑇1, 𝑇1𝑄1, 𝑄2𝑇2, 𝑇2𝑄2 𝑄1𝑇2, 𝑇1𝑄2 –
S-T – 𝑆2𝑇1, 𝑇2𝑆1 𝑆1𝑇1, 𝑇1𝑆1, 𝑆2𝑇2, 𝑇2𝑆2 𝑆1𝑇2, 𝑇1𝑆2 –
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Figure 4: Experiment procedures. SS: short segment
includes both SS-I and SS-II corresponding to the
first 4-second and last 4-second video, respectively.

terms of content and complexity. As a result, a single score is
sufficient to summarize its quality. Third, in SSCQE, there is
time delay between the recorded instantaneous quality and
the video content, and such delay varies between subjects
and is also a function of the slider’s “stiffness”. This is an
unresolved issue of the general SSCQE methodology, but can
be avoided when a single score is acquired [15].

We carry out three subjective experiments as illustrated
in Fig. 4. Subjects are invited to rate the quality of SS in
Experiment I. The subjective rating of each SS is defined
as the intrinsic quality. We perform Experiment II on LS,
wherein subjects give two opinions to the first and second
4-second video segments (referred to as SS-I and SS-II, re-
spectively). An audio stimulus is introduced in the middle
of each LS, indicating the end of SS-I and the start of SS-II.
In Experiment III, subjects are requested to watch the LS
but to provide a single score to reflect their overall QoE.
In order to remove any memory effects, we randomly shuf-
fle content and adaptation patterns while ensuring that the
same content and adaptation patterns are not consecutively
displayed to a subject. A training session is performed before
each experiment to let subjects familiarize typical distortion
types and levels, so as to minimize the learning effect. We
limit the length of each session up to 25 minutes to reduce
the fatigue effect. Subjects score the quality of each video
sequence according to the eleven-grade 0-10 numerical quality
scale suggested in the ITU-T recommendation P.910 [23].

The subjective testing is setup in a normal indoor home
setting with an ordinary illumination level, with no reflecting
ceiling walls and floors. All videos are displayed at their
actual pixel resolution on an LCD monitor at a resolution
of 1920 × 1080 pixels with Truecolor (32bit) at 60Hz. The
monitor is calibrated in accordance with the ITU-T BT.500
recommendations [22]. A customized graphical user interface
is used to render the videos on the screen and to record
subject ratings. A total of 36 näıve subjects, including 16
males and 20 females aged between 18 and 33, participate in
the subjective experiments. Visual acuity and color vision are
confirmed from each subject before the test. Given the time
constraints, each subject is assigned 5 out of the 12 contents
in a circular fashion in Experiment III. To be specific, if
subject 𝑖 was assigned contents 𝑗 to (𝑗+4), then subject
𝑖+1 would watch contents (𝑗+1) to (𝑗+5). All 49 adaptation
patterns for these contents are displayed to the subject only
once.

4 DATA ANALYSIS

4.1 Data Processing

The subject rejection procedure in [22] is used and one sub-
ject is rejected from the experiment, resulting in 35 valid
subjects. We average the scores from valid subjects to obtain
the mean opinion score (MOS) for each video. We evaluate
the performance of individual subjects by calculating the
correlation between individual subject ratings and the MOSs
for each video content, and then averaging correlations across
content. The Spearman’s rank-order correlation coefficien-
t (SRCC) is employed as the comparison criterion, which
ranges from 0 to 1 with a higher value indicating better
performance. The mean and standard deviation of the re-
sults from Experiment I are shown in Fig. 5. The average
performance across all subjects is also given in the rightmost
column. Considerable agreement is observed among different
subjects on the perceived quality of the test video sequences.
Similar observations can be drawn from Experiment II and
III, which are not reported here due to the page limit.

4.2 Experiment I

Fig. 6 plots the MOSs of SS with respect to the bitrate.
Thanks to the initial subjective test before determining the
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Figure 5: SRCC between the individual subject rat-
ing and the MOS. Rightmost column: performance
of an average subject.

QP parameters used to create the compressed videos, the
resulting MOS scatter in a wide range of the available scales,
which allows us to study different cases of quality adaptation.
We have several observations from the scatter plot. First, the
MOS distribution of three distortion types has significant
implications on the optimal encoding strategy of streaming
videos. Specifically, encoding a low resolution video generally
results in a better perceptual quality than encoding a high
resolution video with the same resource at very low bitrates
(e.g., around 200kbps). Furthermore, frame rate reduction is
not a wise choice for video compression. This may be because
the temporal discontinuity caused by frame rate reduction
increases the difficulty of motion prediction, which in turn
increases the bitrate. As it comes to the medium bitrate range
(e.g., from 300kbps to 600kbps), the efficiency of frame rate
reduction is higher than spatial resolution reduction, while
pure H.264 compression achieves the best performance on
average. When there is sufficient bandwidth resources (e.g.
higher than 700kbps), light H.264 compression is preferred
while neither spatial nor temporal resolution reduction is ap-
preciated by subjects. Second, the optimal encoding strategy
is largely content-dependent. For example, temporal resolu-
tion reduction does not affect the perceptual quality of the
sequences 3dPrinter, Sunrise, and WildAnimal much, because
those video sequences contain significantly less motion than
others. On the other hand, the video sequences Chicago and
MtTakao have more complex texture details, therefore more
strongly affected by the loss of spatial resolution. Somewhat
surprisingly, subjects prefer spatially downsampled videos
than pure compressed videos with low spatial complexity such
as FightForGlory and SplitTrailer, because compression often
introduces unnatural stripe-shaped artifacts in smooth region-
s, while spatially down-sampling does not suffer from such
problem. This suggests that the resource allocation scheme in
H.264 encoder is not optimal in terms of perceptual quality,
and a psychovisual rate-distortion enhanced encoder may
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Figure 6: Rate-quality scatter plot. Q: H.264 com-
pressed videos; S: spatially downsampled videos; T:
temporally downsampled videos.

achieve better performance. Given the observed content di-
versity, a one-size-fits-all encoding scheme obviously cannot
provide the best video quality for a given title. Therefore, it
is preferable to devise per-title encoding ladders for better
resource allocation. Last, while Chicago and News have very
similar temporal complexity according to the TI metric [23],
the effect of frame rate reduction in the encoding process
are drastically different, suggesting that a more sophisticated
content-differentiating feature analysis is needed.

4.3 Experiment II

The intrinsic quality of SS are compared to the retrospective
ratings of SS in Experiment II to investigate the influence
of quality adaptations. As illustrated in Fig. 7 and Fig. 8,
quality adaptations have substantially different impacts on
the perceptual quality of video segments before and after
switching. The MOSs on SS-I are highly consistent in both
experiments. However, adaptations change the subjects’ s-
trategy in updating their opinions on SS-II. Specifically, we
identify four influencing factors of such quality deviation from
intrinsic quality, and summarize the observations as follows.

Intensity effect: The intensity of quality change is the
dominant factor of the perceptual quality deviation of SS-II.
Fig. 8(a) shows that the perceptual quality of SS-II following
a negative quality adaptation is generally lower than its
intrinsic quality, and the amount of penalty is correlated with
the intensity of negative quality adaptation. One explanation
may be that there is a higher viewer expectation when viewers
are exposed to high video quality in the beginning, and thus
the quality degradation makes them feel more frustrated.
The overall trend aligns with existing studies of time-varying
video quality [9–12, 29]. On the other hand, we do not observe
a consistent penalty or reward across all ranges for constant
or positive quality adaptation scenarios.
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Figure 7: MOS of the SS-I in Experiment I vs. MOS of the SS-I in Experiment II.
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Figure 8: MOS of the SS-II in Experiment I vs. MOS of the SS-II in Experiment II.

Type effect: The type of adaptation, given in Table 3, is
another major influential factor of QoE. Significant differ-
ences between subjective ratings given to different types of
adaptation can be found in Fig. 8(b). In particular, temporal
resolution adaptation is rated as the least favorable approach
in the quality adaptation, even in the case of positive adap-
tation. Compression level and spatial resolution adaptations,
on the other hand, do not introduce extra penalty in general,
whereas subjects penalize sudden occurrence of blurring arti-
fact when the quality of SS-I is high. It is also noteworthy
that the multi-dimensional adaptation types Q-T and S-T
also introduce penalty on the perceptual quality of SS-II,
especially when the intrinsic quality ranges from medium to
high, while the Q-S adaptation does not have such effect.

Level effect: It is suggested that the amount of reward or
penalty that subjects give to SS-II is not only affected by the
intensity effect and type effect, but also the intrinsic quality
level where the adaptation occurs. The vertical distance from
the green points to the diagonal line in Fig. 8(a) increases
along the horizontal axis, suggesting a quality degradation
occurred in the high quality has more impacts on QoE than
one occurred in the low quality range. Conversely, subjects
tend to give high reward to quality improvement occurred in

the low-quality range, suggesting an interesting Weber’s law
effect [2]. However, the amount of reward is relatively smal-
l comparing to the penalty introduced by negative quality
adaptation, indicating that subjects use asymmetric strate-
gies in updating their opinions. To the best of our knowledge,
this level effect has not been reported in the literature, and
may explain the lack of consistent results in quality adapta-
tions. The reason behind is not fully understood but is worth
deep investigation.

Content effect: Content seems to play a minor role in qual-
ity adaptations. However, we observe that the contents with-
out scene change such as Chicago and StreetDance are more
heavily degraded by quality adaptations than the video se-
quences consisting of frequent scene changes such as 3dPrinter
and Sunrise. This may be because the quality adaptations
occurred within the same scene are more perceivable. This
phenomenon is also orally confirmed by the participants.

We further perform ANalysis Of VAriance (ANOVA) test
on the MOSs of SS-II from Experiment II to understand
the statistical significance of the influencing factors, where
the p-value is set to 0.05. The results suggest that intensi-
ty of adaptation, type of adaptation, intrinsic quality level,
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Figure 9: Performance of average pooling in Experi-
ment I and II.

content, the interactions between intensity and type of adap-
tation, and the interactions between intrinsic quality level
and intensity of adaptation are statistically significant to the
MOS discrepancy between Experiments I and II.

4.4 Experiment III

To understand the strategy that subjects employed to inte-
grate segment-level perceptual video quality into an overall
QoE score, we evaluate 7 temporal pooling strategies using
both the intrinsic quality and 𝑝𝑜𝑠𝑡-ℎ𝑜𝑐 quality obtained in
Experiment I and II, respectively [15]. These include Mean,
Min, and Max MOS of all segments, the MOS of SS-I and
SS-II, weighted average MOS with increasing weights (W+),
where w = [ 1

3
, 2

3
] for long video clips, and decreasing weights

(W-), where w = [ 2
3
, 1

3
]. SRCC and Pearson linear correla-

tion coefficient (PLCC) between the predicted and actual
QoE are then calculated to provide quantitative evaluation,
shown in Table 4 and Table 5, respectively. It is interesting
to note that the average pooling of 𝑝𝑜𝑠𝑡-ℎ𝑜𝑐 segment-level
scores exhibit the highest correlation to the overall QoE, even
outperforming the increasing weights pooling strategy that
is designed to account for the recency effect. To ascertain

that the improvement of the post-hoc average model is sta-
tistically significant, we performed F-test on the prediction
residual as suggested in [11]. We observe the post-hoc average
model is significantly better than the W+ model with a 95%
confidence level. This suggests that the impact of the recen-
cy effect is secondary in adaptive streaming. Furthermore,
Fig. 9 compares the scatter plots of the MOS versus the aver-
age intrinsic segment-level quality and the average 𝑝𝑜𝑠𝑡-ℎ𝑜𝑐
segment-level MOS, respectively. The average intrinsic quali-
ty tends to overestimate the QoE of LS with negative quality
adaptation while the average 𝑝𝑜𝑠𝑡-ℎ𝑜𝑐 MOS achieves better
performance in predicting the overall QoE. This observation
suggests a promising approach in developing objective QoE
models: instead of applying sophisticated temporal pooling
strategies, we should first predict the 𝑝𝑜𝑠𝑡-ℎ𝑜𝑐 segment-level
video quality, which is affected by the four influencing fac-
tors of quality adaptation. Average pooling on the 𝑝𝑜𝑠𝑡-ℎ𝑜𝑐
quality scores is then sufficient to predict the overall QoE.

5 PERFORMANCE OF OBJECTIVE
VQA MODELS

We test 5 objective VQA models including PSNR, SSIM [26],
MS-SSIM [27], SSIMplus [16], and VQM [14] along with 7
temporal pooling strategies as described in Section 4.4. To be
specific, for each objective VQA algorithm, we compute the
objective VQA scores for each SS by averaging frame-level
scores, resulting in 168 predicted quality scores. We then
apply the temporal pooling schemes on the segment-level
video quality scores in each LS. Since none of the VQA algo-
rithms supports cross-resolution and cross-frame-rate video
quality evaluation except for SSIMplus, we up-sampled all
representations to 1920×1080 and 30 fps, and then apply
the VQA on the up-sampled videos because it is the size of
display in the subjective experiment. Table 4 and Table 5
summarize the evaluation results on LS, which are some-
what disappointing because state-of-the-art VQA models and
temporal pooling schemes do not seem to provide adequate
predictions of perceived time-varying video quality.

The test results also provide some useful insights regarding
the general approaches used in VQA models. First, from the
significant improvement of MS-SSIM and SSIMplus upon S-
SIM, we may conclude that the multi-scale approach performs
better against variations in resolution. Second, the straw-man
solution of cross-frame-rate VQA generally underestimates
the quality of low frame rate video segments, suggesting that
cross-frame-rate VQA is a complex problem that requires
more sophisticated modeling than what has been covered in
traditional VQA models. Third, although average pooling of
intrinsic segment-level quality results in suboptimal perfor-
mance, none of the existing pooling strategies outperforms
average pooling consistently because subjects employ asym-
metric strategies in updating their opinions. The approach
suggested in Section 4.4 has the potential to greatly improve
the performance of VQA in predicting time-varying video
quality.



Table 4: SRCC comparison between actual MOS and predicted MOS using different base quality measures
(segment-level MOS, post-hoc MOS, segment-level PSNR, segment-level SSIM, segment-level MS-SSIM,
segment-level SSIMplus, and segment-level VQM) and different pooling strategies (mean, min, max, median,
SS-I, SS-II, W+, and W-). Segment-level objective VQA is computed as frame average.

Base
PSNR

SSIM MS-SSIM SSIMplus VQM Segment-level Post-hoc
measure [26] [27] [16] [14] MOS MOS

Mean 0.30 0.23 0.42 0.70 0.59 0.85 0.90
Min 0.21 0.18 0.36 0.58 0.54 0.75 0.73
Max 0.35 0.31 0.51 0.60 0.51 0.71 0.68
SS-I 0.16 0.14 0.27 0.32 0.32 0.42 0.42
SS-II 0.37 0.34 0.55 0.65 0.64 0.78 0.68
W+ 0.33 0.26 0.45 0.75 0.62 0.87 0.86
W- 0.25 0.20 0.38 0.59 0.51 0.72 0.76

Table 5: PLCC comparison between actual MOS and predicted MOS after a non-linear mapping using dif-
ferent base quality measures (segment-level MOS, post-hoc MOS, segment-level PSNR, segment-level SSIM,
segment-level MS-SSIM, segment-level SSIMplus, and segment-level VQM) and different pooling strategies
(mean, min, max, median, SS-I, SS-II, W+, and W-). Segment-level objective VQA is computed as frame
average.

Base
PSNR

SSIM MS-SSIM SSIMplus VQM Segment-level Post-hoc
measure [26] [27] [16] [14] MOS MOS

Mean 0.32 0.27 0.49 0.73 0.59 0.87 0.90
Min 0.26 0.19 0.47 0.64 0.53 0.79 0.77
Max 0.36 0.33 0.50 0.62 0.52 0.72 0.70
SS-I 0.18 0.16 0.29 0.36 0.33 0.45 0.45
SS-II 0.39 0.33 0.56 0.68 0.62 0.79 0.69
W+ 0.35 0.31 0.53 0.77 0.62 0.88 0.87
W- 0.28 0.22 0.44 0.62 0.52 0.75 0.79

6 CONCLUSIONS

To study the visual QoE in adaptive video streaming, we
introduce a new database involving 168 short and 588 long
video clips with variations in compression level, spatial res-
olution, and frame-rate. We design a series of subjective
experiments to exploit the multi-dimensional adaptation s-
pace. The database, together with the subjective data, will
be made available to the public to facilitate future QoE re-
search. Our path-analytic results indicate that the perceptual
quality of the former video segment has a direct effect on
the subsequent video segment, which in turn influences the
overall QoE. The perceptual quality deviation introduced by
quality adaptation is a function of the intensity of adapta-
tion, type of adaptation, intrinsic video quality, content, and
the interactions between them. We find that positive quality
adaptation exhibits a Weber’s law effect, but the effect is less
significant for negative adaptations. The opinion updating
function has the potential to greatly improve the performance
of objective VQA models, which by themselves do not deliver
strong prediction results.

Many challenging problems remain to be solved. First, due
to the limited duration of the subjective experiments, we
only investigate the impact of a single quality adaptation
event to the QoE. A comprehensive study consisting of more

content types and adaptation patterns is desired to better
understand the behaviors of human viewers and to examine
the generalizability of the current findings. Second, very
little work has been dedicated to explain the underlying
mechanism why quality variation affects QoE. A theoretical
framework that integrates the useful findings from the current
study may guide the development of subjective and objective
QoE models for streaming videos. Third, optimization of the
existing video streaming frameworks based on the current
findings is another challenging problem that desires further
investigations.
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