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Abstract

We introduce a subject-rated 4K video quality database that contains perceptual video
distortions from state-of-the-art encoders. The Waterloo 4K Video Quality database, so
far the largest of its kind, consists a total of 1200 videos generated from 5 encoders in-
cluding AV1, AVS2, HEVC, H.264, and VP9 at 3 spatial resolutions. According to the
experimental results, the new generation of encoders provides significant average bitrate
savings over H.264, with the best performance achieved by AV1. We evaluate the perfor-
mance of 5 objective video quality assessment (VQA) models with regards to their effi-
cacy in predicting subjective video quality. The subjective database is available online at
https://ece.uwaterloo.ca/~z777li/4kvqa/.

1. Introduction

4K or UHD content is expected to deliver a better quality of experience that is widely
adopted in consumer video services in recent years. By increasing the resolution by
4 times over the full HD (FHD) content, 4K is capable of providing more perceptual
details and information. Compared with FHD standards, 4K not only sets a higher
post for perceptual quality, but also raises a stricter requirement for video compression
efficiency.

Since its standardization, 4K has attracted an increasing amount of attention
from the video compression field. Although higher resolution delivers better video
clarity, the increase in the number of pixels brings new challenge to video encoders
under the limiting storage or bandwidth resource. To this end, several modern video
encoders such as HEVC [1], AV1 [2], and AVS2 [3] are deliberately optimized for
4K content compression. With many video encoders at hand, it becomes pivotal to
compare their performance, so as to find the best algorithms as well as further ad-
vancement direction. Because the human visual system (HVS) is the ultimate receiver
in most applications, subjective evaluation is a straightforward and reliable approach
to evaluate the quality of videos. Although expensive and time consuming [4], a com-
prehensive subjective subjective study has several benefits. First, it provides useful
data to study human behaviors in evaluating perceived quality of encoded videos.
Second, it supplies a test set to evaluate and compare the relative performance of
classical and modern video encoding algorithms. Third, it is useful to validate and
compare the performance of existing objective video quality assessment (VQA) mod-
els in predicting the perceptual quality of encoded videos. This will in turn provide
insights on potential ways to improve them.



Several recent subjective studies have been conducted to evaluate the perceptual
quality gain of 4K over FHD videos [5] [6] [7] [8]. Although conclusions are drawn
in their paper that 4K contents deliver better quality-of-experience (QoE) against
FHD, most of the work only covers a small number of contents. Moreover, in terms
of resolutions and encoders, most of the work only covers FHD and 4K for HEVC and
H.264 encoders. In [9], only HEVC encoder is evaluated by using 10 contents under
4K resolution. Cheon et al. compared the performance of HEVC, H.264, and VP9
at FHD and 4K on 10 contents [10], from which they conclude that the added value
of 4K over FHD was more noticeable at high bitrate, which was more prominent for
contents having high spatial complexity. However, the performance of next-generation
encoders, AV1 and AVS2, on 4K videos has not been systematically evaluated. In
summary, all of the above studies suffer from the following problems: (1) the dataset
is limited in size; (2) the type of encoders do not fully reflect the state-of-the-art; and
(3) the spatial resolutions do not cover enough commonly used display sizes.

In this work, we conduct subjective evaluation of traditional and state-of-the-art
video encoders on 4K content. Our contributions are threefold. First, we construct so
far the largest subject-rated 4K video database. The database contains 20 high quality
sequences of diverse content types and 1200 compressed videos generated from 5
encoders including H.264 [11], VP9 [12], AV1 [13], AVS2 [14] and HEVC [15]. Second,
we carry out a subjective experiment to evaluate the performance of video encoders.
Our analysis illustrate that AV1 achieves quality gain at the cost of significantly
longer encoding time. Third, we evaluate 5 objective VQA models. Existing objective
VQA models exhibit moderate performance in predicting the perceptual distortion
introduced by novel encoders at high resolutions.

2. 4K Video Database and Subjective Quality Experiment

Video Database Construction

A video database, named Waterloo 4K Video Quality database, of 20 pristine high-
quality videos of size 3840 × 2160 are selected to cover diverse content, including
humans, plants, natural scenes, architectures and computer-synthesized sceneries. All
videos have the length of 10 s [16]. The detailed specifications are listed in Table 1 and
screenshots are shown in Fig. 1. Spatial information (SI) and temporal information
(TI) [17] that roughly reflect the complexity of video content are also given in Table
1, which suggests that the video sequences are of diverse spatio-temporal complexity
and widely span the SI-TI space. Using the aforementioned sequences as source,
each video is encoded with H.264, VP9, AV1, AVS2 and HEVC at three spatial
resolutions (3840×2160, 1920×1080, and 960×540) and four distortion levels. The
specific encoders and their detailed configurations are shown in Table 6 and Table 5
in Appendix. A small-scale internal subjective test is conducted and the encoding
bitrates are adjusted accordingly to guarantee that the neighboring distortion levels
are perceptually distinguishable. Eventually, we obtain 1200 videos encoded by 5
encoders in 3 resolutions and 4 distortion levels.
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Figure 1: Snapshots of reference video sequences. (a) Safari. (b) 2D cartoon. (c) News.
(d) Teppanyaki. (e) Screen recording. (f) Botanical garden. (g) Tears of steel. (h) Soccer
game. (i) Animation. (j) Motor racing. (k) Climbing. (l) Colorfulness. (m) Forest. (n)
Lightrail. (o) Dolphins. (p) Dance. (q) Spaceman. (r) Barbecue. (s) Supercar. (t) Traffic.

Table 1: Spatial Information(SI), Temporal Information (TI), Framerate (FPS), and De-
scription of Reference Videos

Name FPS SI TI Description
Safari 24 26 41 Animal, smooth motion

2D carton 25 38 55 Animation, camera motion
News 25 32 45 Human, static

Teppanyaki 24 33 32 Food, average motion
Screen recording 30 82 12 Screen content, partial motion
Botanical garden 30 112 10 Natural scene, static

Tears of steel 24 28 61 Movie, high motion
Soccer game 30 54 24 Sports, high motion
Animation 30 55 32 Animation, high motion

Motor racing 24 57 37 Sports, camera motion
Climbing 30 38 73 Game, high motion

Colorfulness 30 23 65 Texture, smooth motion
Forest 24 46 24 Natural scene, camera motion

Lightrail 30 79 32 Architecture, camera motion
Dolphins 25 54 23 Animal, smooth motion

Dance 30 73 32 Human, high motion
Spaceman 24 51 2 Human, static
Barbecue 25 100 11 Natural scene, smooth motion
Supercar 25 80 22 Sports, average motion
Traffic 30 89 24 Architecture, high motion



Subjective Experiment Methodology

Our subjective experiment generally follow the single stimulus methodology as sug-
gested by the ITU-T recommendation P.910 [17]. The experiment setup is normal
indoor home settings with ordinary illumination level and no reflecting ceiling walls or
floors. All videos are displayed at 3840x2160 resolution on a 28 inch 4K LED monitor
with Truecolor (32bit) at 60Hz. The monitor is calibrated to meet the ITU-T BT.500
recommendations [18]. Videos are displayed in random order using a customized
graphical user interface and individual subjects’ opinion score are recorded.

A total of 66 naive subjects, including thirty nine males and twenty seven females
aged between 18 and 35, participated the subjective test. Visual acuity and color
vision are confirmed with each subject before the subjective test. A training session
is performed before the formal experiment, in which 3 videos different from those
in formal experiment are rendered. The same methods are used to generate the
videos used in the training and testing sessions. Therefore, before the testing session,
subjects knew what distortion types would be expected. Subjects were instructed
with sample videos to judge the overall video quality based on distortion level. Due
to the limited subjective experiment capacity, we employed the following strategy.
Each subject is assigned 10 contents in a circular fashion. Specifically, if subject i is
assigned contents 1 to 10, then subject i + 1 watch contents 2 to 11. Each video is
assessed for at least 30 times. For each subject, the whole study takes about 3 hours,
which is divided into 6 sessions with five 5-minute breaks in between to minimize the
influence of fatigue effect.

In our experiment, we chose 100-point continuous scale as opposed to a discrete
5-point ITU-R Absolute Category Scale (ACR) due to three advantages: broader
range, finer distinctions between ratings, and demonstrated prior efficacy [19]. After
converting subjective scores to Z-scores per session to account for any differences
in the use of the quality scale between sessions, we proceed to an outlier removal
process suggested in [18]. No outlier detection is conducted participant-wise due to
the fact that in our rotational experiment only three or four participants watched
the same 600 videos. After outlier removal, Z-scores are linearly re-scaled to lie in
the range of [0, 100]. The final quality score for each individual video is computed
as the average of the re-scaled Z-scores, namely the mean opinion score (MOS), from
all valid subjects. Pearson linear correlation coefficient (PLCC) and Spearman rank-
order correlation coefficient (SRCC) between the score given by each subject and
MOS are calculated. The average PLCC and SRCC across all subjects are 0.79 and
0.78, with standard deviation of 0.09 and 0.08 respectively, suggesting that there is
considerable agreement among different subjects on the perceived quality of the test
video sequences.

Subjective Data Analysis

We use the MOS value of the 5 encoders described in the previous section to evaluate
and compare their performance. It is worth noting that the performance comparison
is only based on the encoder configuration provided in Appendix, where all encoders
are set to configuration equivalent to the ‘veryslow’ setting of HEVC encoders.
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Figure 2: RD curves of all three resolutions for source video (a) Tears of steel. (b) Barbecue.

Sample rate-distortion (RD) curves are given in Fig. 2. From the RD curves of all
content, we have several observations. First, H.264 under-performs all the other four
encoders in most cases, which justifies the performance improvement of the latest
video encoders in recent years. Second, under the resolution of 540p, the RD curves
of all encoders are clustered together across almost all bitrates, while the encoder
performance difference becoming more obvious when the resolution increase. This
observation validates the necessity of 4K subjective video quality testing because
compression distortion are more visible for the high resolution content. Third, we
can observe that AV1 achieves the highest bitrate saving for high motion content.
This may be explained by the advancement of AV1 motion prediction schemes which
utilizes warped motion, global motion tools and more reference frames [20].

In addition to the qualitative analysis, we also compute the bitrate saving [21] [22]
of each encoder over another. The result is shown in Table 2, from which we can
observe that AV1 outperforms the other encoders with a sizable margin. However,
it is worth noting that AV1’s performance is achieved on the condition of its much
longer computation time compared with all other encoders.

The time complexity performance test is done on a Ubuntu 16.04 system with In-
tel E5-1620 CPU. As shown in Table 3, we can see the AV1 consumes over 500 times
of H.264’s computational time, which take the least amount of encoding time. The
results suggest that state-of-the-art H.264 implementations are still highly competi-
tive choices for time critical tasks, while the encoding speed of AV1 hinders it from
practical applications. It is worth mentioning that AV1 is still under development
and the current version has not been fully optimized for multi-thread encoding. VP9



Table 2: Column BD-Rate Saving vs. Row (Lower the Better)

540p AVC VP9 AVS2 HEVC AV1
AVC 0 - - - -
VP9 -28.9% 0 - - -
AVS2 -20.3% 34.5% 0 - -
HEVC -22.7% 24.2% 4.9% 0 -
AV1 -34.4% -4.5% -17.6% -23.3% 0

1080p AVC VP9 AVS2 HEVC AV1
AVC 0 - - - -
VP9 -47.5% 0 - - -
AVS2 -45.8% 22.1% 0 - -
HEVC -42.2% 22.7% 10.8% 0 -
AV1 -48.7% -3.5% -21.4% -20.1% 0

2160p AVC VP9 AVS2 HEVC AV1
AVC 0 - - - -
VP9 -62.2% 0 - - -
AVS2 -63.5% 5.5% 0 - -
HEVC -61.2% 9.5% 10.7% 0 -
AV1 -63.2% -16.4% -15.0% -9.5% 0

Table 3: Encoder Relative Complexity vs. H.264 at 3 Resolutions

H264 HEVC AV1 VP9 AVS2
4K 1 4.2810 590.74 5.2856 9.8568

1080P 1 4.7314 546.19 6.6286 10.0401
540P 1 5.2805 806.15 5.2572 11.7716

and HEVC show comparable time complexity while the AVS2 double their encoding
time. They compromise between compression performance and speed.

3. Objective Quality Assessment

We use 5 objective VQA models including PSNR, MS-SSIM [23], VQM [24], VMAF [25]
and SSIMplus [26] to test their generalizability on novel video encoders. The imple-
mentations of the VQA models are obtained from the original authors. Since none of
the VQA models except for SSIMplus supports cross-resolution video quality evalu-
ation, for the other 4 VQA models, all representations are upsampled to 3840×2160
and the VQA is performed on the up-sampled videos. PLCC and SRCC are employed
to evaluate the performance of objective VQA models in terms of their effectiveness in
predicting MOS. Scatter plots of objective scores vs. MOS for all the 5 QoE metrics
on our dataset, along with the best fitting logistic functions, are shown in Fig. 3.

Table 4 summarizes their overall performance and the performance under the three
resolutions, where the top VQA models for each evaluation criterion are highlighted
in bold. It can be observed that in most cases SSIMplus is the best performing VQA
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Figure 3: Video Quality Metric versus MOS. (a) SSIMplus. (b) VMAF. (c) MS-SSIM. (d)
VQM. (e) PSNR.

Table 4: Performance Comparison of VQA Models

Overall 540p 1080p 2160p
PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

PSNR 0.4197 0.4162 0.3993 0.4143 0.4155 0.3858 0.3259 0.3252
SSIMplus 0.7930 0.7757 0.7604 0.6874 0.8662 0.8265 0.7469 0.7523
VMAF 0.7371 0.7387 0.7247 0.7018 0.7909 0.7646 0.6335 0.6521
VQM 0.6154 0.6282 0.5165 0.5357 0.6659 0.6722 0.5831 0.6163

MS-SSIM 0.5942 0.5555 0.5100 0.4549 0.6440 0.5936 0.5945 0.5574
Average Subject 0.7917 0.7819 0.7229 0.7007 0.8287 0.8079 0.7770 0.7584

model, in that it can capture video quality across different resolutions. For VQM, we
can observe that the points are clustered for different contents, which indicate that
VQM has large potential for improvement in terms of content-adaption. PSNR, the
traditional quality model, is the weakest in the current test, which is likely due to
its ignorance of any human visual system properties. Moreover, based on the scatter
plot, we can see that both SSIMplus and VMAF tend to overestimate the quality score
of H.264 videos. This perhaps indicates that with the better quality performance of
modern video encoders, the quality standard of subjective participants also increase,
while the VQA model, which trained or tuned on classical encoders, may fail to
predict the quality score accurately. From our observation, modern video encoders,
such as AV1 and HEVC, produce less blocky compression artifact and more smooth
frame transition compared with H.264, which VQA models may paid less attention to.
The average subject-wise correlation against MOS is also included in Table 4, from



which we can see that even though current VQA models are not fully efficacious in
predicting video QoE, top models such as SSIMplus and VMAF can achieve average
human performance.

4. Conclusions and Discussion

We introduce the Waterloo 4K Video Quality database, which contains 1200 encoded
videos that were derived from diverse source videos and 5 modern video encoders.
We assessed 5 VQA models with statistical analysis. The database is made publicly
available to facilitate future VQA research.

It is important to note that video coding standards define decoders only, and their
encoder instantiations and configurations vary significantly from one to another. Due
to the limited subjective experiment capacity and the large number of combinations
of encoder configurations, “fair” comparison of video encoders is extremely difficult,
if not impossible.

Therefore, conclusions about the performance of video coding standards should be
drawn with caution. The current study is valid for the given encoders with the spec-
ified encoding configurations only. Moreover, state-of-the-art VQA models exhibit
moderate correlations the the MOS, suggesting space for further improvement.

References

[1] T. Tan, M. Mrak, V. Baroncini, and N. Ramzan, “Report on HEVC compression
performance verification testing,” Joint Collab. Team Video Coding (JCT-VC), 2014.

[2] Alliance for Open Media. (March. 2018) The alliance for open media kickstarts
video innovation era with “AV1” release. [Online]. Available: https://aomedia.org/
the-alliance-for-open-media-kickstarts-video-innovation-era-with-av1-release/

[3] PKU-VCL. (2018) AVS2 technology. [Online]. Available: http://www.avs.org.cn/
avs2/technology.asp

[4] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? A new look at
signal fidelity measures,” IEEE signal processing magazine, vol. 26, no. 1, pp. 98–117,
2009.

[5] P. Hanhart, M. Rerabek, F. De Simone, and T. Ebrahimi, “Subjective quality evalu-
ation of the upcoming HEVC video compression standard,” in Applications of Digital
Image Processing XXXV, vol. 8499, no. 84990V, 2012, pp. 1–13.

[6] S. Deshpande, “Subjective and objective visual quality evaluation of 4K video using
AVC and HEVC compression,” in SID Symposium Digest of Technical Papers, vol. 43,
no. 1, 2012, pp. 481–484.

[7] S.-H. Bae, J. Kim, M. Kim, S. Cho, and J. S. Choi, “Assessments of subjective video
quality on HEVC-encoded 4K-UHD video for beyond-HDTV broadcasting services,”
IEEE Trans. Broadcasting, vol. 59, no. 2, pp. 209–222, 2013.
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Appendix

Table 5: Encoder Version and Package
Encoder Version Package URL

AV1 v1.0.0 https://aomedia.googlesource.com/aom/+/v1.0.0

AVS2 v1.0 https://github.com/pkuvcl/xavs2

HEVC ffmpeg v.2.8.15 https://trac.ffmpeg.org/wiki/Encode/H.265

H264 ffmpeg v.2.8.15 https://trac.ffmpeg.org/wiki/Encode/H.264

VP9 ffmpeg v.2.8.15 https://trac.ffmpeg.org/wiki/Encode/VP9

Table 6: Encoder Configurations
AV1 aomenc INPUT –width=WIDTH –height=HEIGHT –i420 -y –fps=FRAMERATE/1 –cpu-

used=1 –threads=4 –profile=0 –lag-in-frames=19 –min-q=0 –max-q=63 –auto-alt-ref=1 –kf-
max-dist=60 –kf-min-dist=60 –drop-frame=0 static-thresh=0 –bias-pct=50 –minsection-pct=0 –
maxsection-pct=2000 –arnr-maxframes=7 –arnr-strength=5 –sharpness=0 –undershoot-pct=100
–overshoot-pct=100 –tile-columns=2 –frame-parallel=0 –test-decode=warn -v –end-usage=q –cq-
level=BITRATE –webm -o OUTPUT

AVS2 xavs2 -f encoder ra.cfg -p InputFile=INPUT –FramesToBeEncoded=FRAMERATE –
FrameRate=FR –SourceWidth=WIDTH –SourceHeight=HEIGHT –InputSampleBitDepth=8
–SampleBitDepth=8 –TargetBitRate=BITRATE –OutputFile=OUTPUT

HEVC ffmpeg -i INPUT -c:v libx265 -preset veryslow -s WIDTHxHEIGHT -crf CRF -x265-params
“ref=5:keyint=60:min-keyint=60:scenecut=0” OUTPUT

H264 ffmpeg -i INPUT -c:v libx264 -preset veryslow -s WIDTHxHEIGHT -crf CRF -refs 5 -g 60 -
keyint min 60 -sc threshold 1 -f mp4 OUTPUT

VP9 ffmpeg -i INPUT -c:v libvpx-vp9 -pass 1 -speed 1 -s WIDTHxHEIGHT -crf CRF -b:v 0 -tile-
columns 0 -frame-parallel 0 -f webm /dev/null; ffmpeg -i INPUT -c:v libvpx-vp9 -pass 2 -speed 1
-s WIDTHxHEIGHT -crf CRF -b:v 0 -tile-columns 0 -frame-parallel 0 -auto-alt-ref 1 -lag-in-frames
25 -f webm OUTPUT


