QUALITY OF EXPERIENCE PREDICTION FOR STREAMING VIDEO

Zhengfang Duanmu

Joint work with Abdul Rehman, Kai Zeng, and Zhou Wang

July 13, 2016

Outline

Video Streaming and Quality of Experience

- Video Streaming
- Quality of Experience
- Objective QoE Prediction

Streaming Quality Index (SQI)

- Objective QoE Prediction Model
- Experimental Results

Conclusions

Video Streaming Quality of Experience Objective QoE Prediction

Outline

- Video Streaming
- Quality of Experience
- Objective QoE Prediction

2) Streaming Quality Index (SQI)

- Objective QoE Prediction Model
- Experimental Results

Conclusions

Video Streaming Quality of Experience Objective QoE Prediction

The Age of Streaming

Video Streaming Quality of Experience Objective QoE Prediction

The Age of Streaming

Factors of Picking Streaming Service

- Quality of Experience;
- Content;
- Price;
- Advertisement.

□▶∢∰▶∢≣▶∢≣▶ ≣ ∽९९៚ 5/26

Video Streaming Quality of Experience Objective QoE Prediction

Quality of Experience

Definition

The degree of delight or annoyance of the user of an application or service. [Callet, 2013]

□ ▶ < ॑ ➡ ▶ < ≧ ▶ < ≧ ▶ ≧ → ᠑ < ៚ 6/26

Video Streaming Quality of Experience Objective QoE Prediction

Quality of Experience

Influencing Factors

• Playback smoothness

Video Streaming Quality of Experience Objective QoE Prediction

Quality of Experience

Influencing Factors

• Duration of initial buffering

Video Streaming Quality of Experience Objective QoE Prediction

Quality of Experience

Influencing Factors

• Video presentation quality

Video Streaming Quality of Experience Objective QoE Prediction

Interaction between Presentation Quality and Stalling Experience

Figure: SRCC = 0.79

Video Streaming Quality of Experience Objective QoE Prediction

Subjective QoE Prediction

Subjective QoE Assessment

Existing QoE models: Quality of Service-based

Philosophy

• There exists a causal relationship between generic QoS problems and generic QoE problems.

Factors

- Throughput -> Delivered video quality
- Stalling duration -> Waiting experience

Existing Models

- Linear mapping [Mok, 2011];
- Exponential mapping [Hoßfeld, 2012];
- Logrithmic mapping [Rodriguez, 2012];

Video Streaming Quality of Experience Objective QoE Prediction

Existing QoE models: Signal Fidelity-based

Philosophy

• QoE can be measured by the distance from test video to the prestine video in the video space.

Existing Models

- PSNR;
- SSIM [Wang, 2004];
- MS-SSIM [Wang, 2003];
- VQM [Pinson, 2004];
- SSIMplus [Rehman, 2015];

Video Streaming Quality of Experience Objective QoE Prediction

Our method: Hybrid

Motivation

- QoS-based: not directly related to human perception;
- Signal fidelity-based: only work for static videos;
- No modeling on the interaction between video presentation quality and stalling.

Dbjective QoE Prediction Model Experimental Results

Outline

Video Streaming and Quality of Experience

- Video Streaming
- Quality of Experience
- Objective QoE Prediction

Streaming Quality Index (SQI)

- Objective QoE Prediction Model
- Experimental Results

Conclusions

Objective QoE Prediction Model Experimental Results

Presentation Quality

► < □ > < ■ > < ■ > < ■ > < ■ > < ■ < ○ < ○</p>
16/26

Objective QoE Prediction Model Experimental Results

Presentation Quality

Objective QoE Prediction Model Experimental Results

Stalling Experience Quantification

Stalling Experience Quantification

$$S^{k}(t) = \begin{cases} P_{i_{k}-1}\left(-1 + \exp\left\{-\left(\frac{tf-i_{k}}{T_{0}}\right)\right\}\right) & \frac{i_{k}}{f} \leq t \leq \frac{i_{k}+l_{k}}{f} \\ P_{i_{k}-1}\left(-1 + \exp\left\{-\left(\frac{l_{k}}{T_{0}}\right)\right\}\right) & \\ \cdot \left(\exp\left\{-\left(\frac{tf-i_{k}-l_{k}}{T_{1}}\right)\right\}\right) & t > \frac{i_{k}}{f} \\ 0 & \text{otherwise} \end{cases}$$
(1)

Objective QoE Prediction Model Experimental Results

Stalling Experience Quantification

Parameters

Parameter	Description			
T_0	rate of dissatisfaction in stalling event			
T_1	strength of memory in stalling event			
T_0^{init}	rate of dissatisfaction in initial buffering event			
T_1^{init}	strength of memory in initial buffering event			
\dot{P}_0	expectation on initial quality of the video			

Objective QoE Prediction Model Experimental Results

Presentation Quality

20/26

Objective QoE Prediction Model Experimental Results

Experimental Results

Performance comparison of QoE models on streaming video QoE database.

	PLCC	MAE	SRCC	KRCC
FTW [Hoßfeld, 2012]	0.3313	14.9455	0.3154	0.2583
PSNR	0.6663	10.7254	0.6715	0.4697
SSIM [Wang, 2004]	0.8432	7.6039	0.8177	0.6070
SSIMplus [Rehman, 2015]	0.8350	7.6934	0.8024	0.5924
SQI-PSNR	0.7391	9.8445	0.7492	0.5434
SQI-SSIM	0.9015	5.8941	0.9009	0.7238
SQI-SSIMplus	0.9026	5.8330	0.9007	0.7213

Objective QoE Prediction Model Experimental Results

Experimental Results

ロ ト 4 聞 ト 4 直 ト 4 直 ・ 9 9 9 9

22/26

Outline

Video Streaming and Quality of Experience

- Video Streaming
- Quality of Experience
- Objective QoE Prediction

Streaming Quality Index (SQI)

- Objective QoE Prediction Model
- Experimental Results

Conclusions

Conclusions

Contribution

- Proposed an objective QoE model for video streaming that considers presentation quality and its interaction with stalling;
- Achieved the best performance in predicting subject opinions.

Future Work

- Construct comprehensive database;
- Investigate other QoE-related factors;
- Improve the QoE model.

References

- P. L. Callet, S. MÃűller, and A. Perkis "Qualinet White Paper on Definitions of Quality of Experience", *European Network on Quality of Experience in Multimedia Systems and Services*, 2013.
- - R. Mok, E. Chan, and R. Chang, "Measureing the quality of experience of HTTP video streaming," *IFIP/IEEE Int. Sym. Integrated Network Management*, 2011.

T. Hoßfeld, S. Egger, R. Schatz, K. Masuch, and C. Lorentzen, "Initial delay vs. interruption: between the devil and the deep blue sea," *IEEE QoMEX*, 2012.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," *IEEE TIP*, 2004.

Z. Wang, E. P. Simoncelli, and A. C. Bovik, "Multiscale structural similarity for image quality assessment," *IEEE Asilomar*, 2003.

M. H. Pinson, S. Wolf, "A new standardized method for objectively measuring video quality," *IEEE Trans. Broadcasting*, 2004.

A. Rehman, K. Zeng, and Z. Wang, "Display device-adapted video quality-of-experience assessment," *SPIE Electronic Imaging*, 2015.

Thank you