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Abstract—Rate-distortion (RD) theory is at the heart of lossy
data compression. Here we aim to model the generalized RD
(GRD) trade-off between the visual quality of a compressed video
and its encoding profiles (e.g., bitrate and spatial resolution).
We first define the theoretical functional space W of the GRD
function by analyzing its mathematical properties. We show that
W is a convex set in a Hilbert space, inspiring a computational
model of the GRD function, and a method of estimating model
parameters from sparse measurements. To demonstrate the
feasibility of our idea, we collect a large-scale database of
real-world GRD functions, which turn out to live in a low-
dimensional subspace of W . Combining the GRD reconstruction
framework and the learned low-dimensional space, we create
a low-parameter eigen GRD method to accurately estimate the
GRD function of a source video content from only a few queries.
Experimental results on the database show that the learned GRD
method significantly outperforms state-of-the-art empirical RD
estimation methods both in accuracy and efficiency. Last, we
demonstrate the promise of the proposed model in video codec
comparison.

Index Terms—Rate-distortion function, video quality assess-
ment, quadratic programming.

I. INTRODUCTION

RATE-DISTORTION (RD) theory lays a theoretical foun-
dation for lossy data compression, and is widely used to

guide the design of image and video compression schemes [1].
One of the most profound outcomes from the theory is the so-
called RD function [2], which describes the minimum bitrate
required to encode a signal when a fixed amount of distortion
is allowed (i.e., the highest achievable quality given limited
bitrate resources). Many multimedia applications depend on
precise measurements of RD functions to characterize source
videos, to maximize user Quality-of-Experience (QoE), and
to make efficient use of bitrate resources. Examples of such
applications include codec evaluation [3], [4], rate-distortion
optimization [5], video quality assessment (VQA) [6], encod-
ing representation recommendation [7]–[10], and QoE opti-
mization of streaming videos [11], [12].

Despite the tremendous growth in multimedia applications
over the years, effective methods for estimating RD functions
are largely lacking. Previous works [5], [8], [10], [13], [14]
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mainly focused on one-dimensional RD function estimation
while holding other video attributes fixed [15]. For example,
Toni et al. [8], [16] assumed a reciprocal parametric form for
the RD function. Chen et al. [10] modeled the rate-quality
curve at each spatial resolution using a logarithmic function.
The above methods make strong a priori assumptions, which
may not hold in real-world situations. Later, relaxed con-
straints on the RD function such as continuity [9] and axial
monotonicity [15] are imposed. However, such RD function
estimation methods often require dense sampling in the video
representation space, which is computationally expensive.

However, bitrate is not the only influential factor of per-
ceptual video quality. In order to meet the growing diversities
of display technology, video content, and network capacity,
practical video delivery is accomplished by the cooperation
of two components: the server and the client. Fig. 1 shows
the visual communication pipeline. At the server side, source
videos are pre-processed and encoded into several represen-
tations with different bitrates, spatial resolutions, frame rates,
and bit depths to fit different communication channels. At the
client side, video players resample the transmitted videos to fit
the displays [17]. The perceived video quality is altered by all
these distortion processes and the interactions among them.
Computational models that can predict such end-of-process
video quality given the set of encoding parameters are of great
interest in the video processing community [7]–[9], [12].

To this end, we formalize the concept of generalized rate-
distortion (GRD) function, and construct mathematical and
computational models to characterize it for compressed videos.
In this paper, we define the GRD function by f : R2 7→ R,
where the input is the encoding bitrate and the spatial resolu-
tion, and the output is the video quality. A key feature of the
GRD function is that it is content- and encoder-dependent.

While many recent studies acknowledge the importance
of the GRD function [7]–[10], existing GRD models often
rely on heuristically designed functional forms, without any
theoretical justification or empirical validation. Moreover, a
recent study in GRD functions has shown that the RD curves
at different resolutions of a source video are highly depen-
dent [15]. Most existing methods estimate RD functions with
different video attributes in an independent manner [7], [11],
[18], completely ignoring the regularization among such RD
functions, an essential property of GRD functions [15]. In
addition, their performance is sensitive to the number of
attribute-quality pairs for training, and degrades drastically



IEEE TRANSACTIONS ON IMAGE PROCESSING 2

Source
Video

Server

Pre-processing
(Resample)

Lossy 
Compression

Client

Decompression Post-processing
(Resample)

Encoded
Representation

Rendered
Video

Received
Encoded

Representation

Video
Distribution 

Network

Fig. 1. Flow diagram of visual communication pipeline.

when the sampled pairs are sparse. This scenario often oc-
curs in practice because obtaining an attribute-quality pair
involves sophisticated video encoding and quality assessment
processes, both of which may demand excessive computational
resources. For example, the recently announced AV1 video
encoder [19] can be over 100 times slower than real-time for
full high-definition (i.e., 1920×1080) video content [20], [21].

We believe the major difficulty arises from the lack of
thorough theoretical understanding and accurate computational
modeling of GRD functions. Inspired by previous work in
modeling camera response function [22], we perform math-
ematical analysis of GRD functions, based on which we
describe a computational model for accurate GRD function
reconstruction, whose desirable properties are as follows:
• Mathematical soundness. We analyze the mathematical

properties that all GRD functions share, and show that
they must lie within a convex set W resulting from
the intersection of an affine subspace and a convex
cone in a Hilbert space. This analysis not only inspires
a computational GRD model, but also guarantees the
validity of the estimated GRD function.

• Low complexity. We collect a great number of real-
world GRD functions, and find that they live in a low-
dimensional subspace of W , suggesting efficient model
estimation with a minimal number of samples.

• Quality. We conduct extensive experiments to show that
the proposed method achieves consistent improvement
both in prediction accuracy and rate of convergence. The
robustness of the proposed method is also empirically
validated in various practical scenarios.

In addition, we demonstrate how video codec comparison can
benefit from the proposed GRD model. We have made the
proposed GRD model along with the GRD function database
available at http://ece.uwaterloo.ca/∼w238liu/2020egrd/.

II. THEORETICAL SPACE OF GRD FUNCTIONS

We begin by stating our assumptions of desirable GRD
functions. Our first assumption is that the domain of GRD
functions is a compact set Ω. A typical setting of Ω is a
rectangular region in the bitrate-resolution space, i.e., (x, y) ∈
Ω = [xmin, xmax]× [ymin, ymax], where x and y represent the
bitrate and diagonal length of spatial resolution of an encoded
video representation, respectively. The upper and lower bounds
of x and y are easily determined in practical applications.
In this paper, we consider xmin = 0, suggesting that all
pixel intensities are severely degraded to a single value and
therefore no bits are required to encode the video. This further
implies that ∀y ∈ [ymin, ymax], f(0, y) = zmin, where zmin

represents the worst perceptual quality. The value of xmax may

be determined by the maximum lossless encoding rate among
a large number of pristine videos of diverse complexity. On the
other hand, ymax is typically equal to the size of the source
video, and ymin can be obtained from the commonly used
encoding configuration recommendations [18], [23], [24]. In
addition, since the unit of perceptual quality is arbitrary, we
normalize the range of GRD functions such that zmin = 0 and
zmax = 100 [25], [26].

Our second assumption is that GRD functions are continu-
ous, i.e., f ∈ C(Ω). In principle, RD curves are guaranteed to
be continuous at each single resolution [1]. Besides, successive
changes in spatial resolution would gradually deviate the
spectrum of the source video, leading to smooth transitions
in perceptual quality. The continuity of the GRD function has
been empirically observed in many subjective user studies [6],
[27].

Our third assumption is that GRD functions are axially
monotonic along the bitrate dimension1. According to the
RD theory [1], the perceived quality of the source video
increases monotonically with respect to the number of bits
it takes in lossy compression. However, such monotonicity
constraint may not be applied to the spatial resolution dimen-
sion. For example, encoding at high resolution with insufficient
bitrate would produce artifacts such as blocking, ringing, and
contouring, whereas encoding at low resolution with upsam-
pling/interpolation using the same bitrate would introduce
blurring. The relative quality resulting from the two encoding
profiles is highly dependent on the video content and the
bitrate used. Consequently, encoding at high spatial resolution
may even result in lower video quality than encoding at low
spatial resolution under the same bitrate [9]. Fig. 2 visualizes
a few sample GRD surfaces to show the axial monotonicity
and the continuity of real-world GRD functions.

Our fourth assumption is that GRD functions are mono-
tonically increasing with respect to the spatial resolution at
the highest encoding bitrate xmax. When a pristine video
is encoded with the highest bitrate, we consider that no
compression artifacts will be introduced during encoding.
Therefore, quality degradation can only result from the loss
of high frequency component during the lowpass filtering,
downsampling and upsampling process. Since the degree of
frequency loss is a monotonic function of the scaling factor,
the perceptual quality degrades as the encoding resolution
reduces. This also implies that (xmax, ymax) corresponds to
the highest perceptual quality zmax.

Under these assumptions, we define the space of GRD

1In this work, we use rate-distortion function and rate-quality function
interchangeably. Without loss of generality, we assume the function f to be
axially monotonically increasing.
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Fig. 2. Samples of GRD surfaces for different video content.

functions as:

W :={f : R2 7→ R|f ∈ C(Ω); f(xmax, ymax) = 100;

f(xmin, y) = 0,∀y ∈ [ymin, ymax];

f(xa, y) ≤ f(xb, y),∀xa ≤ xb;
and f(xmax, ya) ≤ f(xmax, yb),∀ya ≤ yb}. (1)

The equality constraints inW jointly form an affine space H1,
which can be described as a linear subspace

H0 :={f : R2 7→ R|f ∈ C(Ω); f(xmax, ymax) = 0

and f(xmin, y) = 0,∀y ∈ [ymin, ymax]} (2)

translated by any function f0 ∈ H1. Formally, we may express
the relationship between H1 and H0 by

H1 = f0 +H0,∀f0 ∈ H1. (3)

The remaining inequality constraints jointly form a convex
cone

V :={f : R2 7→ R|f(xa, y) ≤ f(xb, y),∀xa < xb

and f(xmax, ya) ≤ f(xmax, yb),∀ya < yb}, (4)

as it is readily shown that ∀α, β ≥ 0 and v0, v1 ∈ V , αv0 +
βv1 ∈ V .

Finally, we conclude that the theoretical space W can be
described as the intersection of the affine space H1 and the
convex cone V:

W = H1 ∩ V. (5)

It is worth noting that W is a convex set, thanks to the
convexity of H1 and V .

III. FRAMEWORK FOR GRD FUNCTION MODELING

In order to find a suitable parametrization of the infinite-
dimensional space W , we make use of the relations H1 =
f0 +H0 and W = H1∩V . We first conclude that ∀h ∈ H0, h
is square-integrable as h is a continuous function defined over
a compact set as shown by Eq. (2). Therefore, it is possible
to equip the space H0 with an inner product

〈h, g〉 :=

∫∫
Ω

h(x, y)g(x, y)dxdy,∀h, g ∈ H0, (6)

and define an induced metric by

d2(h, g) :=

[∫∫
Ω

|h(x, y)− g(x, y)|2dxdy
] 1

2

,∀h, g ∈ H0.

With the metric d2 at hand, we may complete H0 by including
the limits of all Cauchy sequences that belong to the functional
subspace. It turns out that the completion of H0 is the space of
all square-integrable functions defined on Ω, which we denote
by L2(Ω). By definition, L2(Ω) is a Hilbert space with Eq. (6)
being the inner product operation, and H0 is a dense subset
of L2(Ω) [28].

Then we are able to modelW with countable parameters. It
is known that H0 is separable, as polynomial functions form
a dense countable subset of H0 [28]. Therefore, we conclude
that there exists an orthonormal basis {hn, n = 1, 2, 3, · · · } ⊂
H0 that spans L2(Ω):

h ∼
∞∑

n=1

cnhn, ∀h ∈ L2(Ω) (7)

where ∼ denotes the equality relationship in the d2 sense, and
cn = 〈h, hn〉 ∈ R. As a result, any GRD function f ∈ W can
be expressed as a linear combination of {hn}:

∃{cn}, such that f = f0 +

∞∑
n=1

cnhn,∀f ∈ W. (8)

Eq. (8) not only parametrizes the theoretical space of GRD
functions, but also provides a series of approximation models.
For example, it is straightforward to compute an N -th order
approximation:

f̃ = f0 +

N∑
n=1

cnhn, (9)

As N becomes larger, the above model approximates the GRD
functions better in W .

The parametrization of GRD functions also provides a
systematic way of estimating a GRD function from samples.
The N -th order model in Eq. (9) defines an N -dimensional
approximation of W:

W̃N :=

{
f

∣∣∣∣f = f0 +

N∑
n=1

cnhn, f ∈ V

}
. (10)
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The approximation space W̃N is a subset ofW as {hn} ⊂ H0,
meaning that any element in W̃N is a valid GRD function.
Therefore, estimating a GRD function corresponds to finding
the optimal element in W̃N that best fits given samples. Since
W̃N is a closed convex set, we formulate GRD function es-
timation as the projections-onto-convex-sets (POCS) problem.
Given a set of attribute-quality pairs {f(xi, yi) = zi, i ∈ I},
where I denotes the index set, we aim to solve

arg min
{cn}

∑
i∈I
|zi − f0(xi, yi)−

N∑
n=1

cnhn(xi, yi)|2

s.t. f0 +

N∑
n=1

cnhn ∈ V.

(11)

We then plug the optimal coefficients {c∗n} into Eq. (9) to
obtain the estimated GRD function.

IV. EGRD MODEL FOR GRD FUNCTIONS

The general framework proposed in Section III allows
arbitrary orthonormal basis, which leads to different GRD
methods. For example, a polynomial model can be obtained
by setting hn in Eq. (9) to the 2-dimensional polynomial basis.
Similarly, one can obtain a trigonometric approximation model
with hn being the half-sine basis. One drawback of fixed
basis functions is that they are not adaptive to real-world
GRD functions, and thus may not capture the directions of
large variations on the data manifold. Such models may need
a great number of basis functions to achieve a satisfactory
approximation accuracy, which in turn require a great number
of training samples. In this section, we seek a minimal set
of eigen basis functions that can effectively represent the ma-
jority of real-world GRD functions. The resulting eigen GRD
(eGRD) model for GRD functions is data efficient, meaning
that it can be accurately estimated from sparse samples.

A. Optimal Basis of Real-World GRD Functions

1) GRD Function Database: Although the GRD function is
continuous in theory, we often work with a discrete version in
practice. For example, a limited number of profiles are speci-
fied in video encoding, suggesting that only a finite number of
samples on a GRD surface are practically achievable. Here, we
densely sample the bitrate-resolution space on a rectangular
grid, and collect all the GRD function values (i.e., quality
of corresponding representations) as a K-dimensional vector.
Hereafter, we treat f ∈ RK as the ground-truth discretization
of the GRD function f , with the mild assumption that f is
smooth enough to be recovered from its dense samples2.

Following this idea, we construct a large-scale database of
GRD functions, namely the Waterloo GRD database. First,
we collect 1, 000 pristine videos with Creative Commons
licenses, spanning a great diversity of video content. To
make sure that the selected videos are of pristine quality, we
perform two rounds of screening to remove those videos with
visible distortions. We further reduce any possible artifacts by

2In fact, when the GRD function is band-limited, it can be fully recovered
with the Nyquist rate.

downsampling the videos to the size of 1, 920× 1, 080, from
which we trim 10-second semantically coherent video clips.
Eventually, we end up with 1, 000 high-quality 10-second
videos. Sample frames are shown in Fig. 3, where we can
see the richness of video content.

Each video in the database is distorted by the following
sequential process:

• Spatial downsampling: We downsample the source video
using the bicubic filter to six spatial resolutions (1920×
1080, 1280 × 720, 720 × 480, 512 × 384, 384 × 288,
320 × 240) according to the list of Netflix certified
devices [9]. Consequently, the lower and upper bounds
of spatial resolution are ymin = 400 and ymax = 2203,
respectively.

• H.264/VP9 compression: We encode the downsampled
sequences using two commonly used video encoders, i.e.,
H.264 and VP9, with two-pass encoding [3], [9], [16].
The target bitrate ranges from 100 kbps to 9 Mbps with
a step size of 100 kbps. Thus the lower and upper bounds
of bitrate are xmin = 100 kbps and xmax = 9000 kbps,
respectively. The full encoding specification is detailed in
Appendix A.

In total, we obtain 540 (hypothetical reference circuit [25])
× 1, 000 (content) × 2 (encoder) = 1, 080, 000 video rep-
resentations (currently the largest in the VQA literature).
Ideally, the response of a GRD function should be mea-
sured by subjective evaluation, because the human eye is
the ultimate receiver in most visual applications. However,
subjective testing is expensive and time consuming. Here
we opt to replace subjective assessment with objective VQA
measurements. Specifically, we use SSIMplus [29] to evaluate
the quality of the 1, 080, 000 video representations for the
following reasons. First, SSIMplus is shown to outperform
other state-of-the-art quality measures in terms of accuracy
and speed [29], [30]. Second, it is currently the only objective
VQA model that offers meaningful cross-resolution and cross-
device scoring. Third, its precedent models SSIM [31] and
MS-SSIM [32] have been demonstrated to perform well in
estimating GRD functions [10], and have been widely used
in industry practice. The outputs of SSIMplus are regarded
as the ground-truth responses of GRD functions. The range of
SSIMplus is from 0 to 100, with 100 indicating perfect quality.
It is worth noting that our GRD modeling approach does not
restrict itself to any specific VQA method.

We post-process the raw data to obtain GRD functions on a
regular grid. First, the lossless encoding bitrate may be lower
than 9, 000 kbps when the complexity of the source video
is low. In such case, we pad the highest achievable quality
at each resolution to the end of the GRD function along the
bitrate dimension. Second, the rate-control of video encoders
may be inaccurate, leading to discrepancies between the actual
and the target encoding bitrates. To resolve this, we resample
the rate-distortion curves at each resolution uniformly with
a step-size of 100 kbps using 1D piecewise cubic Hermite
interpolation to preserve monotonicity. In the end, we obtain
2, 000 GRD functions from 1, 000 source videos and 2 video
encoders. The large variations of the GRD functions due to
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Fig. 3. Sample frames of source videos in the Waterloo GRD database. All images are cropped for neat presentation.
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principal components.

content diversity are shown in Fig. 2.
2) Eigen Basis for Real-World GRD Functions: Recall that

we aim to discover a set of basis that best approximate the
real-world GRD functions. Consider the m-th real-world GRD
function, denoted by fm, in the Waterloo GRD database, whose
best approximation using the N -th order model in Eq. (9) is
achieved by

f̃m := f0 +

N∑
n=1

〈fm − f0,hn〉hn,

with an approximation error given by

E [fm] :=

∣∣∣∣∣fm −
(

f0 +

N∑
n=1

〈fm − f0,hn〉hn

)∣∣∣∣∣
2

, (12)

where | · |2 indicates the Euclidean norm of a vector, and hn

denotes the discrete version of the basis function hn. Given

M empirical GRD functions in the Waterloo GRD database,
the optimal orthonormal basis is thus obtained by minimizing
the average approximation error:

argmin
f0,{hn}

1

M

M∑
m=1

∣∣∣∣∣fm − f0 −
N∑

n=1

〈fm − f0,hn〉hn

∣∣∣∣∣
2

2

,

s.t. |hn|22 = 1, n = 1, · · · , N,

〈hn,hn′〉 = 0, n, n′ ∈ {1, · · · , N}, n 6= n′.

(13)

For the case of N = 0, it is trivial to show that the optimal
f∗0 equals the mean of the M GRD functions, which is valid
due to the convexity of W . When N ≥ 1, Problem (13) is
essentially principal component analysis (PCA), meaning that
the n-th optimal component h∗n is the eigenvector associated
with the n-th largest eigenvalue of the empirical covariance
matrix of fm. The optimal N -dimensional approximation of
W is also achieved by the span of the first N eigenvectors
plus f∗0 .

Fig. 4 shows that the cumulative energy explained increases
rapidly with the number of principal components. In fact, eight
components explain more than 99.5% of the energy. This
suggests that most real-world GRD functions lie in a low-
dimensional subspace, and that the resulting eGRD models
with only a few parameters should work well. In order to gain
an impression about the shapes of the eigen GRD functions,
we visualize the mean GRD surface f∗0 and the first seven
empirical principal components h∗1 to h∗7 in Fig. 5, from
which we have two observations. First, among the seven
principal components, the first one is the smoothest, while the
second to the seventh are increasingly oscillatory. This finding
implies that the perceptual quality of a video representation
is positively correlated with its neighboring representations
in general. Second, all the principal components exhibit the
greatest magnitudes in regions with low bitrate and high
resolution, indicating their complicated combined effects on
perceptual quality.
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Fig. 5. The mean and the first seven principal components of real-world GRD functions.

B. eGRD Model Estimation from Sparse Samples

By inserting the learned mean f∗0 and the principal com-
ponents {h∗n} into the POCS problem, the parameters of our
eGRD model can be efficiently estimated from sparse samples.
Specifically, to make Problem (11) practically solvable, we
approximate its constraints as a set of linear inequalities. We
first rewrite Eq. (9) in matrix form

f̃ = f0 +H∗Nc, (14)

where H∗N := [h∗1,h
∗
2, · · · ,h∗N ] and c := [c1, c2, · · · , cN ]T .

Denote the matrix of the first order difference along the x-axis
by Dx, and the matrix of the first order difference along the
y-axis only when x = xmax by Dy , respectively. The discrete
form of V can be expressed by[

Dx

Dy

]
f̃ ≥ 0. (15)

By substituting (14) into (15), we obtain

−
[
Dx

Dy

]
H∗Nc ≤

[
Dx

Dy

]
f0, (16)

which imposes linear constraints on the coefficients c. As a
result, finding optimal c∗ turns into a quadratic programming
problem, which can be solved by convex optimization tools,
such as OSQP [33]. Finally, by substituting c∗ into Eq. (9),
we obtain the best eGRD model that fits known samples with
least squared errors.

V. EXPERIMENTS

In this section, we first quantitatively evaluate the ap-
proximation capability of the proposed eigen basis on the
Waterloo GRD database. Then, we compare the performance
of the eGRD model with existing methods on reconstructing
GRD functions from sparse samples. Furthermore, extensive
experiments are conducted to show the robustness of the eGRD
method in various practical scenarios. Finally, we rely on

TABLE I
MEAN AND WORST PERFORMANCE OF EGRD ON THE TRAINING SET WITH

DIFFERENT NUMBERS OF BASIS FUNCTIONS

N
RMSE l∞ error

Mean Worst Mean Worst
0 3.88 20.18 29.66 74.77
1 1.80 14.07 17.43 50.54
2 1.08 7.71 9.64 42.81
3 0.91 4.85 7.92 36.60
4 0.77 4.82 6.69 36.42
5 0.61 4.08 5.21 24.18
6 0.45 3.69 4.06 25.36
7 0.41 2.48 3.41 24.02
8 0.37 2.23 2.88 14.65

TABLE II
RMSE OF GRD MODELS WITH DIFFERENT BASIS FUNCTIONS ON THE
TEST SET. BEST RESULTS FOR MEAN AND WORST PERFORMANCE ARE

HIGHLIGHTED IN ITALICS AND BOLDFACE, RESPECTIVELY

N
Polynomial Trigonometric Eigen

Mean Worst Mean Worst Mean Worst
0 3.86 18.06 3.86 18.06 3.86 18.06
1 3.81 17.90 3.83 17.98 1.79 11.67
2 3.72 15.91 3.75 17.02 1.09 5.29
3 3.68 14.88 3.68 16.52 0.92 3.83
4 3.65 14.86 3.67 16.03 0.77 3.29
6 3.19 10.26 3.57 15.26 0.46 2.54
8 2.86 8.97 3.44 14.41 0.38 2.14
10 2.55 8.34 3.37 13.89 0.32 1.65
15 1.92 7.70 3.17 12.51 0.26 1.38
20 1.83 6.10 3.02 11.54 0.20 1.09

another VQA model [34] to demonstrate the generality of the
eGRD method.

A. Approximation Capability of Basis

As discussed in Section III, we may change the proposed
eigen basis to the polynomial or the trigonometric basis in
Eq. (9), resulting in two alternative GRD models - polynomial
GRD (pGRD) and trigonometric GRD (tGRD). All the models
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TABLE III
l∞ ERROR OF GRD MODELS WITH DIFFERENT BASIS FUNCTIONS ON THE

TEST SET

N
Polynomial Trigonometric Eigen

Mean Worst Mean Worst Mean Worst
0 29.67 66.97 29.67 66.97 29.67 66.97
1 29.63 66.87 29.65 66.92 17.54 45.29
2 29.46 63.80 29.58 66.23 9.67 37.42
3 29.30 59.71 29.47 65.51 8.01 34.48
4 29.13 59.69 29.43 64.65 6.76 33.68
6 27.32 54.51 29.18 62.82 4.12 24.40
8 25.62 53.21 28.79 60.22 2.94 14.57

10 23.55 50.86 28.56 57.96 2.37 12.34
15 17.12 40.88 27.72 55.12 1.69 9.61
20 16.71 40.72 27.07 54.36 1.14 7.44

can fit increasingly complex GRD functions at the cost of
more basis functions and coefficients. What distinguishes them
is the rate at which the approximation error diminishes as
the number of basis vectors increases. We compute four
kinds of approximation errors on the Waterloo GRD database.
Specifically, for each GRD surface, we calculate the root-
mean-square error (RMSE) and the l∞ error between the
reconstructed and the ground-truth functions. For a set of GRD
functions, the average and the largest RMSE or l∞ errors are
reported as the mean and the worst case performance of a
GRD model. In order to train the principle components of the
proposed eGRD model, we randomly split the database into a
training set of 1, 600 GRD functions from 800 source videos
and a test set of the remaining 400 GRD functions. There is no
content overlap between the training and test sets. The random
splitting is repeated 50 times, and the median performance is
reported. Besides, we use all samples of a GRD function to
fit the model coefficients in this experiment.

First, we quantitatively evaluate how well the training data
are represented by the learned eigenvectors. Table I shows the
reconstruction accuracy for N = 0, 1, . . . , 8, where N = 0
means that all the GRD functions are approximated by the
mean f0. As seen in the table, the trend is clear that the
approximation capability improves as the number of basis
vectors increases. In particular, the training data can be pre-
cisely described by an eight-parameter eGRD model, with the
RMSE reduced to 0.37. According to previous studies [35],
[36], such small quality differences are often regarded as
indistinguishable to the human eye [25]. Moreover, the learned
eigen basis can represent most eccentric GRD functions as
indicated by an l∞ error as small as 2.23. Another interesting
finding is that even three principal components can achieve
an average RMSE less than 1, suggesting that the real-world
GRD function space is of rather low dimensionality.

To emphasize the importance of basis selection, we compare
the eigen basis with the polynomial and trigonometric basis by
evaluating the approximation error of eGRD, pGRD and tGRD
on the test set. From Tables II and III, we find that the eigen
basis significantly outperforms the two alternatives, especially
when the number of basis vectors is small. In fact, the approx-
imation capability of 20 polynomial or trigonometric vectors
is beaten by that of two eigenvectors with a clear margin.
This suggests that the eigen basis is more representative than
general fixed basis to describe variations of GRD functions.

In addition, increasing the number of eigenvectors improves
the worst-case performance significantly, while adding more
polynomial or trigonometric vectors achieves much less im-
provement.

B. GRD Reconstruction from Sparse Samples

We test five GRD models including reciprocal regres-
sion [8], logarithmic regression [10], pGRD, tGRD, and eGRD
on the Waterloo GRD database. The first two methods are
designed only for 1D RD curve estimation, but we extend
them for 2D GRD surface reconstruction by performing RD
curve regression at each resolution. For the latter three models,
we set the basis number to eight. To sample a GRD function,
we adopt an information-theoretic sampling method [15],
which generates a fixed sample sequence that minimizes
the uncertainty of the function (see Appendix B for more
details). The convergence rate of each method is reflected
by the reconstruction errors with different sample numbers
S, increasing gradually from 8 to 50. Similar to the previous
experiment, 80% of the GRD functions are randomly selected
as the training set for estimating the eigen basis and the
sampling order. The remaining 20% samples constitute the
test set. The random splitting is repeated 50 times, and the
median results are reported.

Tables IV and V summarize the results, from which we have
several key observations. First, the proposed eGRD method
significantly outperforms the reciprocal and the logarithmic
regression methods in both accuracy and convergence rate.
This may be because 1) the competing methods presume
fixed functional forms, which are poorly matched with real-
world GRD functions, and 2) they treat a GRD surface as an
aggregation of many 1D RD curves, missing the opportunity to
exploit the dependency among different resolutions. Second,
eGRD delivers the best performance among its variants, while
pGRD performs slightly better than tGRD. This is consistent
with the approximation capability of their respective basis in
the previous experiment. Third, the performance of pGRD,
tGRD and eGRD does not improve much as the sample
number increases, implying that the primary influential factor
might be the underlying basis. Fourth, eGRD can precisely
recover a GRD surface with merely eight samples, based on
which the reciprocal and logarithmic models fail to initialize
the fitting process.

C. eGRD with Varying Number of Basis Functions

We fix the number of basis functions of eGRD to eight in
the previous experiment. However, under this setting, eGRD
may neither work well with fewer samples nor benefit from
more probes on the GRD function. Here, we evaluate the
performance of eGRD when the number of basis vectors is
equal to the number of samples. From Table VI, we find that
with varying number of basis vectors, eGRD can reconstruct
a GRD surface even with a single sample. Moreover, we
generally observe significant performance gains when more
samples and basis functions are available. Throughout the rest
of the paper, we use eGRD with varying basis described here
for performance evaluation.
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TABLE IV
RMSE OF GRD MODELS WITH DIFFERENT SAMPLE NUMBERS

S
Reciprocal [8] Logarithmic [10] pGRD tGRD eGRD
Mean Worst Mean Worst Average Worst Average Worst Average Worst

8 N.A. N.A. N.A. N.A. 3.32 9.77 4.90 11.69 0.71 3.04
10 N.A. N.A. N.A. N.A. 3.28 9.21 4.58 11.74 0.64 2.71
20 N.A. N.A. 11.75 26.99 3.05 9.17 4.14 11.79 0.50 2.58
30 13.57 38.35 9.13 19.37 3.04 9.13 4.05 11.81 0.48 2.53
40 11.47 32.06 6.84 13.38 2.96 9.05 4.01 11.76 0.46 2.48
50 9.14 33.02 5.70 12.07 2.93 9.04 3.94 11.77 0.45 2.46

TABLE V
l∞ ERROR OF GRD MODELS WITH DIFFERENT SAMPLE NUMBERS

S
Reciprocal [8] Logarithmic [10] pGRD tGRD eGRD
Mean Worst Mean Worst Mean Worst Mean Worst Mean Worst

8 N.A. N.A. N.A. N.A. 24.46 52.95 28.46 59.92 5.64 29.51
10 N.A. N.A. N.A. N.A. 24.47 52.94 28.43 59.93 3.21 18.00
20 N.A. N.A. 29.64 61.13 24.58 53.04 28.51 59.77 2.62 15.46
30 33.18 61.63 22.46 43.52 24.68 53.06 28.54 59.98 2.47 12.91
40 36.53 67.03 21.02 42.20 24.92 53.05 28.57 59.97 2.47 13.89
50 31.56 65.77 21.12 42.50 24.99 53.05 28.60 60.02 2.50 13.89

TABLE VI
MEAN AND WORST PERFORMANCE OF EGRD WHEN THE NUMBER OF

BASIS VECTORS IS EQUAL TO THE NUMBER OF SAMPLES

N /S RMSE l∞ error
Mean Worst Mean Worst

1 1.83 11.66 17.80 53.38
3 1.20 4.59 8.73 32.63
5 0.87 4.36 6.65 25.48
8 0.71 3.04 5.64 29.51
30 0.40 1.85 2.50 12.98
50 0.22 1.10 1.03 7.15

TABLE VII
MEAN AND WORST PERFORMANCE OF EGRD WITHOUT MONOTONICITY

CONSTRAINTS

N /S RMSE l∞ error
Mean Worst Mean Worst

1 1.45 8.95 15.13 53.41
3 0.87 4.59 7.79 31.72
5 0.73 4.54 6.10 27.06
8 0.76 6.39 7.34 62.40
30 4.52 27.88 26.78 151.15
50 3.15 19.11 15.03 79.02

D. Importance of Monotonicity Constraints

To demonstrate the importance of the monotonicity assump-
tion, we lift the constraints in Problem (11), and solve the
system of linear equations with the least squares method. The
results are listed in Table VII, from which we can see that
the robustness of eGRD deteriorates in general. Particularly,
the simplifed eGRD model easily overfits with more samples,
which is also illustrated in Fig. 6. The reconstructed surface
in Fig. 6 (a) severely violates the axial monotonicity of the
GRD function. In comparison, the proposed eGRD method
exploits the monotonicity constraints to regularize the shape
of the reconstructed surface, leading to an accurate, smooth,
and valid GRD prediction as shown in Fig. 6 (b).
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Fig. 6. The eGRD reconstructed surfaces (a) without and (b) with the
monotonicity constraints. The points represent the discrete ground-truth GRD
function. The red points indicate the training samples.

TABLE VIII
PERFORMANCE OF EGRD TRAINING WITH H.264 [37] AND TESTING ON

VP9 [38]

N /S RMSE l∞ error
Mean Worst Mean Worst

1 2.52 13.66 25.99 60.52
3 1.43 6.25 13.42 37.21
5 0.98 6.87 8.64 33.87
8 0.86 3.66 4.16 21.69
30 0.50 7.28 2.66 20.49
50 0.23 1.15 0.90 8.91

TABLE IX
PERFORMANCE OF EGRD TRAINING WITH VP9 [38] AND TESTING ON

H.264 [37]

N /S RMSE l∞ error
Mean Worst Mean Worst

1 2.21 13.90 23.64 62.21
3 2.37 8.32 10.99 42.58
5 1.53 6.13 12.67 57.66
8 1.86 7.62 6.46 28.33
30 0.87 6.49 3.51 17.42
50 0.32 2.37 1.58 6.93

E. eGRD with Different Encoders

The underlying principle behind eGRD applies to all rate-
allocation strategies and encoding profiles as long as the
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TABLE X
MEAN AND WORST PERFORMANCE OF EGRD ON GRD FUNCTIONS

MEASURED BY VMAF

N /S RMSE l∞ error
Mean Worst Mean Worst

1 6.67 20.45 25.33 69.12
3 2.58 13.51 12.12 48.73
5 1.28 7.24 10.90 55.47
8 0.86 6.32 6.10 29.96
30 0.34 1.75 3.38 17.06
50 0.24 1.12 3.53 11.93

four basic assumptions of GRD functions are satisfied. Here
we investigate the generality of eGRD from one encoder to
other encoders. We split the Waterloo GRD database into two
subsets, one containing 1, 000 GRD functions of the H.264
encoder [37], and the other containing those of VP9 [38]. We
train eGRD on one subset, and test it on the other. Tables VIII
and IX encapsulate the cross-encoder performance, where
we find that the reconstruction accuracy slightly declines
when eGRD is trained and tested under different encoders.
This reflects the fact that each encoder makes respective
assumptions on the distribution of video signal, and thus
systematically deforms the GRD surface towards a specific
direction. Moreover, we are still able to achieve good recon-
struction performance with sufficient samples, implying that
the empirical GRD functions arising from the two encoders
form almost the same space, though the learned principal
components may differ. This observation further enhances the
practicality of the proposed eGRD method. We believe the
generalization capability arises from the similarity between
the encoding processes of x264 and VP9. Nevertheless, for a
substantially different encoder, it is safer to retrain eGRD on
the new encoder before GRD reconstruction.

F. eGRD with Different VQA Models

The proposed eGRD algorithm does not attach itself to
any specific VQA method. To show this, we combine eGRD
with another full-reference VQA model, VMAF [34]. Again,
we leverage the 1, 080, 000 encoded video representations in
the Waterloo GRD database, and evaluate perceptual quality
using VMAF. From Table X, we see that the estimation
accuracy and rate of convergence on the VMAF-based GRD
functions are comparable to SSIMplus-based ones, validating
the generalizability of eGRD. This can be partly ascribed to
the fact that the mathematical assumptions made in Section II
generally hold no matter which VQA model is employed.

G. Model Complexity

eGRD consists of a training phase and a testing phase.
During training, PCA is performed to calculate the eigen-
vectors, with a complexity of O(min(M3,K3)) for a data
matrix X ∈ RM×K [39], where M and K denote the
number of observations and the dimension of each observation,
respectively. On a computer with 3.60 GHz CPU and 16 GB
RAM, it takes less than 1 second to run PCA. The training of
eGRD can be performed offline once, and will not affect the

testing phase. Note that no training is needed for models with
fixed basis.

In the testing phase, eGRD solves a quadratic program-
ming problem, with a computational complexity of O(N2) to
O(N3) [33], [40], where N denotes the number of parameters.
This complexity is similar to that of the reciprocal [8],
logarithmic [10], and logistic [41] methods, which employ
interior-point algorithms with a polynomial complexity [42].
In addition, both the BD [13], [14] and PCHIP [43] models
need to solve linear equation systems with a complexity of at
most O(MN2 +N3) [44].

We have also tested the runtime of all these methods, as
reported in Table XI, from which we can observe that the
proposed eGRD exhibits minimal overhead.

H. Implications
The theoretical foundation of eGRD has several important

implications in real-world applications. First, our mathematical
analysis shows that all GRD functions live in a convex subset
of an affine subspace, which assures a unique and error-
bounded solution. Second, the intrinsic low dimensionality of
GRD functions may facilitate the use of eGRD in reduced-
reference VQA. Specifically, the coefficients of a few eigen-
vectors can be transmitted from the server to the client for
perceptual quality prediction. The transmission of the coeffi-
cients may be economically favorable to raw quality scores
when there are several encoding representations. Third, the
monotonicity properties of GRD functions reflect the trade-off
between bitrate and perceptual quality, and thus are essential
for subsequent video applications.

VI. APPLICATION OF EGRD: VIDEO CODEC COMPARISON

Video coding is the core technology in many modern video
services. In the past decades, new video compression algo-
rithms keep springing up, claiming significant performance
improvements over previous codecs. Algorithm 1 gives the
general framework for video codec comparison. Given a pair
of codecs, Algorithm 1 first estimates the RD and distortion-
rate (DR) curves of the two codecs from S samples (typically
S = 4), and then calculates the relative quality gain and
bitrate saving between the two curves [13], [14], [41], [43].
The reliability of codec comparison depends heavily on the
RD/DR function estimation method.

Since eGRD can accurately estimate a 2D GRD function
from very few samples, we adopt it for 1D RD function
estimation, and introduce an eGRD-based video codec com-
parison method. We generally follow Algorithm 1 with several
modifications. First, the original eGRD method only gives a
discrete RD function. We estimate a continuous function f by
linear interpolation. Second, we obtain the DR function g by
taking the inverse of f . Third, we improve the calculation of
∆Ri by strictly following the definition instead of using the
inaccurate approximation at Line 20 in Algorithm 1:

∆Ri ←
1

zi,H − zi,L

∫ zi,H

zi,L

[
gBi (z)− gAi (z)

gAi (z)

]
dz. (17)

This is made possible because eGRD directly estimates the
bitrate x rather than its logarithm x̂.
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TABLE XI
AVERAGE RUNTIME IN SECONDS OF GRD MODELS OVER 10, 000 RUNS. THE TIME FOR VIDEO ENCODING AND QUALITY ASSESSMENT IS NOT INCLUDED

Model BD Logistic Logarithmic Reciprocal PCHIP pGRD tGRD eGRD

Training (s) – – – – – – – 0.157
Testing (s) 0.022 0.056 0.003 0.089 0.001 0.022 0.021 0.006

Algorithm 1: General Framework for Video Codec
Comparison

input : Two codecs A and B; A set of source videos
V = {vi}Mi=1; A set of target encoding bitrates
{xk}Sk=1

output: Average quality gain ∆Q; Average bitrate
saving ∆R

1 for i← 1 to M do
2 for k ← 1 to S do
3 vAi,k ← Encode vi with A at xk;
4 zAi,k ← VQA(vAi,k);
5 x̂Ai,k ← Log of actual bitrate of vAi,k;
6 vBi,k ← Encode vi with B at xk;
7 zBi,k ← VQA(vBi,k);
8 x̂Bi,k ← Log of actual bitrate of vBi,k;
9 end

10 Fit the rate-distortion (RD) function fAi of Codec
A from {(x̂Ai,k, zAi,k)}Sk=1;

11 Fit the distortion-rate (DR) function gAi of Codec
A from {(zAi,k, x̂Ai,k)}Sk=1;

12 Fit the RD function fBi of Codec B from
{(x̂Bi,k, zBi,k)}Sk=1;

13 Fit the DR function gBi of Codec B from
{(zBi,k, x̂Bi,k)}Sk=1;

14 x̂i,L ←
max[min(x̂Ai,1, . . . , x̂

A
i,S),min(x̂Bi,1, . . . , x̂

B
i,S)];

15 x̂i,H ←
min[max(x̂Ai,1, . . . , x̂

A
i,S),max(x̂Bi,1, . . . , x̂

B
i,S)];

16 ∆Qi ← 1
x̂i,H−x̂i,L

∫ x̂i,H

x̂i,L

[
fBi (x̂)− fAi (x̂)

]
dx̂;

17 zi,L ←
max[min(zAi,1, . . . , z

A
i,S),min(zBi,1, . . . , z

B
i,S)];

18 zi,H ←
min[max(zAi,1, . . . , z

A
i,S),max(zBi,1, . . . , z

B
i,S)];

2020 ∆Ri ← 10
1

zi,H−zi,L

∫ zi,H
zi,L [gB

i (z)−gA
i (z)]dz − 1;

21 end
22 ∆Q← Mean(∆Q1, . . . ,∆QM);
23 ∆R← Mean(∆R1, . . . ,∆RM).

A. Local and Global Codec Comparison

We compare the proposed video codec comparison method
with the logistic model [41], BD [13], [14], and PCHIP [43].
Unlike our model, all competing methods work with log bitrate
as indicated in Algorithm 1. The widely-used BD model
adopts cubic polynomials, while PCHIP employs Hermite in-
terpolating polynomials to fit RD/DR functions. More recently,
a logistic model [41] is proposed to fit the RD function,

with an analytical inverse as the corresponding DR function.
In this experiment, we consider two practical video codecs,
x264 [37] and VP9 [38] at the resolution of 1, 920 × 1, 080,
based on the videos from the Waterloo GRD database. To
quantify the performance, we first calculate the ground-truth
quality gain and bitrate saving on every test video using the
densely-sampled RD/DR functions provided in the Waterloo
GRD database. Then we estimate quality gains and bitrate
savings using these codec comparison models. The average
errors over a set of test videos are reported.

The RD sample set {xk}Sk=1 is a critical aspect of reliable
codec comparison. Unfortunately, to the best of our knowl-
edge, there are no widely accepted querying algorithms in
codec comparison. Therefore, we investigate two sampling
strategies - uniform sampling in the log bitrate scale and uncer-
tainty sampling [15]. Uniform and uncertainty sampling strate-
gies produce the querying bitrate sets {100, 300, 900, 2800}
and {100, 300, 1100, 2800}, respectively, which closely re-
semble bitrate selection in many video codec comparison
studies [20], [45], [46]. We then compute quality gains and
bitrate savings on the bitrate interval [100, 2800] kbps without
examining the extrapolation capability of competition models.

For our eGRD-based codec comparison model, we ran-
domly select 1, 600 RD functions from 800 source videos in
the Waterloo GRD database for training, and leave the rest 200
videos for testing. We repeat the random splitting 50 times,
and report the median results in Table XII. We find that the
proposed eGRD-based method achieves the lowest estimation
errors in both quality gains and bitrate savings. Note that all
competing models generally follow the same framework in
Algorithm 1, implying that the use of eGRD is the main reason
for the performance improvement.

In practice, video engineers are not only interested in the
codec comparison at a particular interval, but also across all
bitrates. Here we examine the performance of codec com-
parison models in the full bitrate range (i.e., [0, 9000] kbps)
given only RD samples on the local bitrate interval [xi,L, xi,H ].
Table XIII shows the results, where we observe that the eGRD-
based codec comparison model achieves a more significant
improvement, thanks to the wide operating range of eGRD.

B. Discussion

To gain an intuition on how the eGRD-based model out-
performs the other three, we select two real-world examples
from the Waterloo GRD database, and draw their respective
estimated RD curves in Fig. 7, where we find that eGRD
and PCHIP perform well in the bitrate range between the two
furthest sample points. By contrast, the logistic model gives
an inaccurate estimate in Fig. 7 (a), and BD even produces
a non-monotonic RD curve in Fig. 7 (b). When it comes
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TABLE XII
AVERAGE ABSOLUTE ESTIMATION ERROR OF ∆Q AND ∆R IN LOCAL CODEC COMPARISON

Error of ∆Q Error of ∆R
BD Logistic PCHIP eGRD BD Logistic PCHIP eGRD

Uniform Sampling 0.772 0.648 0.763 0.512 3.616× 1032 3.267 4.086 2.155
Uncertainty Sampling 0.958 0.824 0.835 0.529 4.255 3.812 4.211 2.388

TABLE XIII
AVERAGE ABSOLUTE ESTIMATION ERROR OF ∆Q AND ∆R IN GLOBAL CODEC COMPARISON

Error of ∆Q Error of ∆R
BD Logistic PCHIP eGRD BD Logistic PCHIP eGRD

Uniform Sampling 4.101 0.408 1.100 0.390 3.723× 1032 3.587 8.629 2.019
Uncertainty Sampling 3.656 0.514 1.239 0.403 4.374× 1076 4.079 9.162 2.193
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Fig. 7. Comparison of RD curve estimations. In both figures, the eGRD
model gives the best approximations, while the other three models can
significantly diverge from the ground-truth.

to the bitrate range that requires extrapolation, we find that
only eGRD is able to accurately predict the ground-truth RD
curves. Due to the lack of regularizers, BD and PCHIP may not
be able to reconstruct valid RD curves with limited samples.
Although the logistic model can produce a valid RD curve, it
saturates too early, failing to reflect the quality gains at high
bitrates. The inaccurate extrapolation explains why the three
existing models [13], [14], [41], [43] coincidentally restrict
their quality gains and bitrate savings in the domain covered
by the samples. However, such restrictions may cause severe
problems in practice. Fig. 8 illustrates two real-world examples
where estimation of either quality gains or bitrate savings fails.

Until now, the BD model is still the most prevalent tool to
compare the performance of two video codecs [20], [47]–[49].
However, in the above experiments, BD performs the worst.
By scrutinizing the experimental results more carefully, we
find two more serious problems of BD. First, it frequently
produces non-monotonic RD/DR curves, even though the
given samples are monotonic (see Fig. 9). Second, BD fits RD
and DR functions independently, so the two functions may not
be the inverse of each other. As a result, the quality gain ∆Q
and the bitrate saving ∆R resulting from BD may sometimes
contradict each other (see Fig. 10).

VII. CONCLUSION

GRD functions provide a comprehensive description of
the relationship between the encoding profile and perceptual
quality, based on which many video-related applications are
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Fig. 8. Existing video codec comparison models often fail when either (a)
the bitrate range or (b) the quality range of the sample representations of one
encoder does not overlap with that of the other.
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Fig. 9. Non-monotonic (a) RD and (b) DR functions of the same video fitted
by the BD model.

made possible. In this work, we propose a general GRD model
for accurate GRD function reconstruction from sparse samples.
The performance improvements of our model may arise from
the data-driven eigen basis for representing real-world GRD
functions and the axial monotonicity constraints for preventing
the model from overfitting. Extensive experiments on the
Waterloo GRD database have shown that the proposed eGRD
algorithm is able to accurately reconstruct GRD functions with
a very small number of samples, and is robust in various
practical scenarios.

APPENDIX A
ENCODING CONFIGURATIONS

Considering video-on-demand adaptive streaming as one
of the major application scenarios, we generally follow the
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Fig. 10. A real-world counterexample of BD. VP9 [38] is compared to
H.264 [37] on the same video content. The positive ∆Q in (a) indicates that
VP9 outperforms H.264, while the positive ∆R in (b) indicates the opposite.

encoding strategies as suggested in [50]. We employ the open-
source FFmpeg software to encode the videos. The x264 [37]
and vpx-vp9 [38] libraries are used for H.264 and VP9
encoding, respectively. The detailed specifications are shown
in Table XIV.

APPENDIX B
UNCERTAINTY SAMPLING

All GRD models rely on a set of attribute-quality pairs. The
“importance” of such pairs in GRD function reconstruction
could be drastically different. The uncertainty sampling pro-
posed in [15] formalizes this intuition based on information
theory. Here we provide a brief description of the method.
Assuming f follows a multivariate Gaussian distribution with a
covariance matrix Σ, the total uncertainty of f is characterized
by its joint entropy. If f is divided into two parts such that

f =

[
f1
f2

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
, and f2 is observed

(e.g., f2 = a), then the remaining uncertainty is given by the
conditional entropy

Hf1|f2(f1|f2) =
1

2
log(|Σ̄|) + const,

where

Σ̄ = Σ11 −Σ12Σ
−1
22 Σ21.

The most informative sample is found by minimizing the log
determinant of the conditional covariance matrix [51]

min
i

log |Σ̄i| = min
i

log

∣∣∣∣∣Σ\ii − σ\iσ
T
\i

σii

∣∣∣∣∣ ,
where Σ\ii is a submatrix of Σ excluding the i-th row and
the i-th column, σ\i is the i-th column of Σ excluding
the i-th entry, and σii is the i-th diagonal element of Σ,
respectively. Minimizing the conditional entropy directly is
computationally expensive, especially when the dimensionality
is high. Alternatively, we minimize a modified upper bound
of the conditional entropy:

min
i

tr

(
Σ\ii −

σ\iσ
T
\i

σii

)
,

where we make use of

log

∣∣∣∣∣Σ\ii − σ\iσ
T
\i

σii

∣∣∣∣∣ ≤ tr

(
Σ\ii −

σ\iσ
T
\i

σii
− I

)

and I is the identity matrix. This process is applied iteratively,
resulting in a sequence of optimal samples in terms of uncer-
tainty reduction. Note that the new covariance matrix Σ̄ does
not depend on any specific observation of f2. As a result, the
algorithm produces the same sampling sequence for all GRD
functions.
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