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Abstract—Many multimedia applications require precise un-
derstanding of the rate-distortion characteristics measured by
the function relating visual quality to media attributes, for which
we term it the generalized rate-distortion (GRD) function. In this
study, we explore the GRD behavior of compressed digital videos
in a two-dimensional space of bitrate and resolution. Our analysis
on a large-scale video dataset reveals that empirical parametric
models are systematically biased while exhaustive search methods
require excessive computation time to depict the GRD surfaces.
By exploiting the properties that all GRD functions share, we
develop an Robust Axial-Monotonic Clough-Tocher (RAMCT)
interpolation method to model the GRD function. This model
allows us to accurately reconstruct the complete GRD function
of a source video content from a moderate number of measure-
ments. To further reduce the computational cost, we present a
novel sampling scheme based on a probabilistic model and an
information measure. The proposed sampling method constructs
a sequence of quality queries by minimizing the overall informa-
tiveness in the remaining samples. Experimental results show that
the proposed algorithm significantly outperforms state-of-the-art
approaches in accuracy and efficiency. Finally, we demonstrate
the usage of the proposed model in three applications: rate-
distortion curve prediction, per-title encoding profile generation,
and video encoder comparison.

Index Terms—Quality-of-experience (QoE); rate-distortion
theory; content distribution; Clough-Toucher interpolation;
quadratic programming; statistical sampling.

I. INTRODUCTION

RATE-DISTORTION (RD) theory provides the theoretical
foundations for lossy data compression and are widely

employed in image and video compression schemes. One
of the most profound outcomes from the theory is the so-
called RD function [1], which describes the minimum bitrate
required to encode a signal when a fixed amount of distortion
is allowed (i.e., the highest achievable quality given limited bi-
trate resources). Many multimedia applications require precise
measurements of RD functions to characterize source signal
and maximize user Quality-of-Experience (QoE). Examples of
applications that explicitly use RD measurements are codec
evaluation [2], RD optimization [3], video quality assessment
(VQA) [4], encoding representation recommendation [5]–[8],
and QoE optimization of streaming videos [9], [10].

Digital videos usually undergo a variety of transforms
and processes in the content delivery chain, as shown in
Fig. 1. To address the growing heterogeneity of display de-
vices, contents, and access network capacity, source videos
are encoded into different bitrates, spatial resolutions, frame
rates, and bit depths before transmitted to the client. In an
adaptive streaming video distribution environment [11], based
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on the bandwidth, buffering, and computation constraints,
client devices adaptively select a proper video representation
on a per-time segment basis to download and render. Each
process influences the visual quality of a video in a different
way, which can be jointly characterized by a generalized rate-
distortion (GRD) function. In general, this attribute-distortion
mapping comprises several complex factors, such as source
content, operation mode/type of encoder, rendering system,
and human visual system (HVS) characteristics. In this work,
we assume the GRD surface is a function f : R2 → R,
where the input of the function is the video representation
consisting of bitrate and spatial resolution, and the output of
the function is the perceptual video quality under a specific
viewing condition. Furthermore, the GRD function is content-
and encoder-dependent.

Despite the tremendous growth in computational multimedia
over the last few decades, estimating a GRD function is
difficult, expensive, and time-consuming. Specifically, probing
the quality of a single sample in the GRD space involves
sophisticated video encoding and quality assessment, both
of which are expensive processes. For example, the recently
announced highly competitive AV1 video encoder [12] and
video quality assessment model VMAF [13] could be over
100 times and 10 times slower than real-time for full high-
definition (1920×1080) video content. Given the massive
volume of multimedia data on the Internet, the real challenge
is to produce an accurate estimate of the GRD function with
a minimal number of samples.

We aim to develop a GRD function estimation framework
with three desirable properties:

• Accuracy: It produces asymptotically unbiased estimation
of GRD function, independent of the source video com-
plexity and the encoder mechanism.

• Speed: It requires a minimal number of samples to
reconstruct a full GRD function.

• Mathematical soundness: The GRD model has to be
mathematically well-behaved, making it readily applica-
ble to a variety of computational multimedia applications.

To achieve accuracy, we analyze the properties that all GRD
functions share, based on which we formulate the GRD
function approximation problem as a quadratic programming
problem. The solution of the optimization problem provides
an optimal interpolation model lying in the theoretical GRD
function space. To achieve speed, we propose an efficient
sampling algorithm that constructs a set of queries to max-
imize the expected information gain. The sampling scheme
results in a unique sampling sequence invariant to source
contents, enabling parallel encoding and quality assessment
processes. To achieve mathematical soundness, the GRD
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Fig. 1. Flow diagram of video delivery chain.
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Fig. 2. Samples of generalized rate-distortion surfaces for different video content.

model is inherited from the Clough-Toucher (CT) interpolation
method, and the function is differentiable everywhere on the
domain of interests. Extensive experiments demonstrate that
the resulting GRD function estimation framework achieves
consistent improvement in speed and accuracy compared to
the existing methods. The superiority and usefulness of the
proposed algorithm are also evident by three applications.

The remainder of this paper is organized as follows. Section
II reviews existing methods of estimating 1D RD or 2D
GRD functions. The theoretical analysis of GRD functions
and the proposed GRD model are introduced in Section III.
The information-theoretic sampling method is elaborated in
Section IV. Performances of the proposed GRD model and
the sampling method are evaluated on a large-scale GRD
function database in Section V, followed by three practical
applications of the GRD model in Section VI. Finally, Section
VII concludes the paper.

II. RELATED WORK

Although the RD theory has been successfully employed
in many multimedia applications, the research in the practical
GRD surface modeling has only become a scientific field of
study in the past decade. Existing methods can be roughly
categorized based on their assumptions about the shape of
a GRD function. The first model class only makes weak
assumptions about the properties of the GRD functions. For
example, [7] assumes the continuity of GRD functions and ap-
plies linear interpolation to estimate the response function after
densely sampling the video representation space. However,
the exhaustive search process is computationally expensive,
not to mention the number of samples required increases
exponentially with respect to the dimension of input space.

By contrast, the second class of models make strong a priori
assumptions about the form of the GRD function to alleviate
the need of excessive training samples. For example, [4]
assumes the video quality exhibits an exponential relationship

with respect to the quantization step, spatial resolution, and
frame rate. Alternatively, Toni et al. [6], [14] derived a
reciprocal function to model the GRD function. Similarly, [8]
models the rate-quality curve at each spatial resolution with a
logarithmic function. A significant limitation of these models
is that domains of the analytic functional forms are restricted
only to the bitrate dimension and several discrete resolutions,
lacking the flexibility to incorporate other dimensions such as
frame rate and bit depth, and the capability to predict the GRD
behaviors at novel resolutions.

In addition to the specific limitations the two kinds of
models may respectively have, they suffer from the same
problem that the training samples in the GRD space are either
manually picked or randomly selected, neglecting the differ-
ence in the informativeness of samples. While many recent
works acknowledge the importance of GRD function [5]–
[8], a careful analysis and modeling of the response has
yet to be done. We wish to address this void. In doing so,
we seek a good compromise between 1) global and rigid
models depending on random training samples and 2) local
and indefinite models requiring exhaustive search in the video
representation space.

III. MODELING GENERALIZED RATE-DISTORTION
FUNCTIONS

We begin by stating our assumptions. Our first assumption
is that the GRD function is smooth. In theory, the Shannon
lower bound, the infimum of the required bitrate to achieve a
certain quality, is guaranteed to be continuous with respect to
the target distortion [15]. On the other hand, successive change
in the spatial resolution would gradually deviate the frequency
component and entropy of the source signal, resulting in
smooth transition in the perceived quality. In practice, many
subjective experiments have empirically shown the smoothness
of GRD functions [4], [16]. We further assume that GRD
functions are C1 continuous, which is not only consistent with
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Fig. 3. Top view of one triangle of the triangulation, showing its three
microtriangles, and the control net with 19 Bézier ordinates associated with
the vertices and center points of microtriangles and the trisection points of
the microtriangle edges.

most existing RD function models [4], [6], [8], [17], but also
desired in many applications [6], [10]. One example of such
applications is shown in Section VI-A.

Our second assumption is that the GRD function is axial-
monotonic with respect to the bitrate1. This is a theoretical re-
sult from the RD theory [15], which assumes that the minimal
possible rate is achieved for a given distortion constraint. It
should be noted that there is a significant gap between theory
and practice in video coding. There is no guarantee that a
video encoder or a VQA model would not make “wrong”
decisions that undermined the theoretical axial-monotonicity
assumption. However, the monotonicity behavior is expected
for any reasonably useful pair of encoder and quality measure,
and should be generally true for state-of-the-art encoders and
quality measures. We have empirically verified the assumption
by observing all test cases collected in our proposed large-
scale GRD function database.

It is worth mentioning that such monotonicity constraint
may not apply to the spatial resolution. It has been demon-
strated that encoding at high spatial resolution may even result
in lower video quality than encoding at low spatial resolution
under the same bitrate combined with upsampling and inter-
polation [7]. To be specific, encoding at high resolution with
insufficient bitrate would produce artifacts such as blocking,
ringing, and contouring, whereas encoding at low resolution
with upsampling and interpolation would introduce blurring.
The resulting distortions are further amplified or alleviated
by the characteristics of the viewing device and viewing
conditions, which interplay with HVS features such as the
contrast sensitivity function [18]. A few sample GRD surfaces
with their corresponding source videos are illustrated in Fig. 2.

Our third assumption is that the quality measurement is
precise. Because the HVS is the ultimate receiver in most
applications, subjective evaluation is a straightforward and

1In this work, we use RD function and rate-quality function interchangeably.
Without loss of generality, we assume the function f to be monotonically
increasing. If f is decreasing, we replace the given response with the function
fmax − f , where fmax is the maximum value of quality.

reliable approach to evaluate the quality of digital videos.
Traditional subjective experiment protocol models a subject’s
perceived quality as a random variable, assuming the quality
labeling process to be stochastic. Because subjective experi-
ment is expensive and time consuming, it is hardly used in the
GRD function approximation process. In practice, objective
VQA methods that produce deterministic quality predictions
are often employed to generate ground truth samples in the
GRD function. Therefore, a GRD function should pass through
the quality scores of objective VQA evaluated on the encoded
video representations.

Under these assumptions, we define the space of GRD
functions as:

WGRD :={f |f(xn, yn) = zn,∀n ∈ N, f ∈ C1 : R2 → R
and ∀xa < xb, f(xa, y) < f(xb, y)},

where N , xn, yn, and zn represent the total number of training
samples, bitrate, spatial resolution, and quality of the n-th
training sample, respectively.

In the subsequent sections, we introduce the proposed GRD
model. Section III-A and III-C review the traditional CT
method and the monotonicity condition of cubic polynomial
Bézier function, which the proposed model relies on. The pro-
posed C1 continuity condition, optimization framework, and
robust axial-monotonic CT algorithm are novel contributions
that are detailed in Section III-B, III-D, and III-E, respectively.

A. Review of Clough-Tocher Method

Since first introduced in 1960’s [19], the CT method has
been the most widely used multi-dimensional scattered data
interpolant, thanks to its C1 continuity and low computational
complexity [20], [21]. Consider the scattered points (xn, yn)
located in the x, y plane and their values zn over the plane, the
triangulation of the scattered points in the x−y plane induces
a piecewise triangular surface over the plane, whose nodes are
the points (xn, yn, zn). Fig. 3 conceptually illustrates one such
triangle from the top view. In the CT method, each triangle
is further divided from its center point S into three equivalent
subtriangles, ∆V0V1S , ∆V1V2S , ∆V2V0S . Hereafter, we refer to
the overall triangle as the macrotriangle and its subtriangles as
microtriangles. The CT method estimates a cubic function in
the form of Bézier surface on each microtriangle, so the whole
CT interpolant is a piecewise cubic function. Mathematically,
a cubic Bézier surface in ∆V0V1S can be formulated as

z(α, β, γ) =cV0
α3 + 3cT01

α2β + 3cI01
α2γ + cV1

β3+

3cT10αβ
2 + 3cI11β

2γ + cSγ
3 + 3cI02αγ

2+

3cI12βγ
2 + 6cC2αβγ. (1)

From (1), we can see two major differences between a normal
cubic function and a Bézier one. First, it represents a point
by barycentric coordinates (α, β, γ) instead of Cartesian co-
ordinates. Specifically, the barycentric coordinates of a point
P with regard to ∆V0V1S can be defined as

αP =
APV1S

AV0V1S
, βP =

APSV0

AV1SV0

, γP =
APV0V1

ASV0V1

,
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where AUVW means the directional area of the triangle
formed by points U, V,W and is positive when U, V,W is
counter-clockwise. The conversion from Cartesian coordinates
to barycentric coordinates is lengthy and thus omitted here.
Interested readers may refer to [20] for more details. Second,
the 10 Bézier parameters in (1) can be associated with 10
specific points of the microtriangle ∆V0V1S . We have illus-
trated the parameter-point correspondence by the parameter
subscripts in (1) and the marked points in Fig. 3. Specifically,
the parameters cV0

, cV1
, cC2

and cS are associated with V0,
V1, C2 and S, respectively, and the remaining parameters are
associated with the 6 trisection points on the three edges of
∆V0V1S . By building up the correspondence, the Bézier cubic
function is controlled by a net of parameters, which is often
referred to as the control net.

In a similar way, two more Bézier cubic functions are
defined on the other two microtriangles, and thus we have
to determine the 30 parameters only knowing the function
values at three macrotriangle vertices. The CT method solves
this highly underdetermined problem by effectively exploiting
certain continuity constraints. Under the C0 assumption within
macrotriangles, each two Bézier surfaces should share their
parameters at the their common boundaries V0S, V1S, and
V2S, leaving 19 free parameters in the macrotriangle ∆V0V1V2

.
The inner-macrotriangle C1 continuity removes 7 additional
degree of freedoms by enforcing the shaded neighboring
microtriangles in Fig. 3 to be coplanar [22]. To ensure inter-
macrotriangle C1 continuity, a standard approach is to assume
the cross-boundary derivatives of the neighboring macrotri-
angles to be collinear, which further reduces the degree of
freedom to 9. Taking into account the three known values at
V0, V1, and V2, we eventually have 6 unknown parameters
in each macrotriangle. Although the gradients at vertices is
not always available in practice, in most cases they can be
estimated by considering the known values not only in the
vertices of the triangle in question, but also in its neighbors.
The most commonly used method is to estimate the gradients
by minimizing the second-order derivatives along all Bézier
curves [23]. Readers who are interested in the details of the
CT method may refer to [20], [21], [23], [24].

The original CT method suffers from at least three lim-
itations in approximating GRD functions. First, it uses the
normal derivative of macrotriangle edges to guarantee inter-
macrotriangle C1 continuity. However, this choice gives an
interpolant that is not invariant under affine transforms. This
has some undesirable consequences: for a very narrow triangle,
the spline can develop huge oscillations [24]. Second, the
interpolant composite of piece-wise Bézier polynomials is not
axial-monotonic, even when the given points are axial mono-
tonic. Third, the CT algorithm achieves inter-macrotriangle
C1 continuity by imposing a linear assumption on normal
derivatives at macrotriangle boundaries. Such an assumption is
somewhat arbitrary and may violate monotonicity we want to
achieve. We will address the three limitations in the subsequent
sections.

B. Affine-Invariant C1 Continuity

In this section, we propose an affine invariant CT inter-
polant. For clarity and brevity, we would like to denote the
macrotriangle edge that is opposite to the vertex Vi, i = 0, 1, 2
by Ei, and the internal microtriangle edge that connects Vi
and S by Êi. Instead of the normal derivative at the triangle
boundary Ei, we consider deEi

to be parallel to ~Ci ¯
iC, i. e.

cPi
=(xPi

− xVi
)dxVi

+ (yPi
− yVi

)dyVi
+ zVi

(2a)

cCi =θkjcTjk
+ θjkcTkj

+ ηid
e
Ei

(2b)

cIi2 =
1

3
[(xIi1 − xVi) + (xTki

− x∗j ) + (xTji − x∗k)]dxVi
+

1

3
[(yIi1 − yVi

) + (yTki
− y∗j ) + (yTji

− y∗k)]dyVi
+

1

3
(xTij

− x∗k)dxVj
+

1

3
(yTij

− y∗k)dyVj
+

1

3
ηkd

e
Ek

+

1

3
(xTik

− x∗j )dxVk
+

1

3
(yTik

− y∗j )dyVk
+

1

3
ηjd

e
Ej

+

1

3
[zVi

+ (θkizVi
+ θikzVk

) + (θijzVj
+ θjizVi

)] (2c)

cS =
1

9

2∑
i=0

[(xIi1 − xVi
) + 2(xTki

− x∗j ) + 2(xTji
− x∗k)]dxVi

+

1

9

2∑
i=0

[(yIi1 − yVi
) + 2(yTki

− y∗j ) + 2(yTji
− y∗k)]dyVi

+

2

9

2∑
i=0

ηid
e
Ei

+
1

9

2∑
i=0

[(1 + 2θji + 2θki)zVi
], (2d)

where
Pi ∈ {Tij , Tik, Ii1},

x∗i =
(xC̄i

−xCi
)(xVj

yVk
−xVk

yVj
)−(xVk

−xVj
)(xCi

yC̄i
−xC̄i

yCi
)

(xC̄i
−xCi

)(yVk
−yVj

)−(yC̄i
−yCi

)(xVk
−xVj

) ,

y∗i =
(yC̄i
−yCi

)(xVj
yVk
−xVk

yVj
)−(yVk

−yVj
)(xCi

yC̄i
−xC̄i

yCi
)

(xC̄i
−xCi

)(yVk
−yVj

)−(yC̄i
−yCi

)(xVk
−xVj

) ,

ηi =
√

(xCi
− x∗i )2 + (yCi

− y∗i )2,

θkj =
xTkj

− x∗i
xTkj

− xTjk

,

θjk =
xTjk

− x∗i
xTjk

− xTkj

,

dxVi
and dyVi

are partial derivatives of the Bézier surface at
Vi and {i, j, k} is a cyclic permutation of {0, 1, 2}. Since
this quantity transforms similarly as the gradient under affine
transforms, the resulting interpolant is affine-invariant [24].

We also lift the unwanted linear constraints on the cross-
boundary derivatives, elevating the number of parameters in a
macrotriangle back to 9. In summary, the equality constraints
in (2) can be factorized into the matrix form for simplicity

c = Rd + f , (3)

where c ∈ R16×1, R ∈ R16×9, d ∈ R9×1, f ∈ R16×1,
c and d represent the values of control net and unknown
derivatives, respectively. Therefore, finding the interpolant of
the macrotriangle corresponds to determining the 9 unknown
parameters in d.
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Besides the inner macrotriangle constraints, we also want
to keep deEi

consistent across the triangle boundary to ensure
external C1 smoothness. As a result, the following equality
constraints need to be added for each edge with adjacent
triangles

deEi
+ deĒi

= 0. (4)

Combining (3) and (4), we conclude that the resulting
function is C1 continuous and affine-invariant.

C. Axial Monotonicity

This section aims to derive the sufficient constraints on
d for the Bézier surface in the macrotriangle ∆V0V1V2

to
be axial-monotonic. In general, the interpolant composite of
piece-wise Bézier polynomials is not monotonic even though
the sampled points are monotonic. Several works have been
done to derive sufficient conditions for a univariate or bivariate
Bézier function [25], [26]. We adopt the sufficient condition
proposed in [26], where it was proved that the cubic Bézier
surface in a microtriangle is axial-monotonic when all the 6
triangular patches of its control net (e.g. ∆I02I12S , ∆C2I11I12 ,
∆C2I01I02 , ∆V1T10I11 , ∆T10T01C2 , and ∆T01V0I01 in ∆V0V1S)
are axial-monotonic. By combining the sufficient conditions in
all three microtriangles and the inner triangle continuity, we
obtain

(yVi
− yVk

)cTij
+ (yVj

− yVi
)cTik

≤ (yVj
− yVk

)zVi
(5a)

(yVk
− yVj

)cIi1 + (yVi
− yVk

)cCk
+ (yVj

− yVi
)cCj

≤ 0 (5b)
(yV2

− yV1
)cI02

+ (yV0
− yV2

)cI12
+ (yV1

− yV0
)cI22

≤ 0 (5c)
(yS − yVj

)cTij
+ (yVi

− yS)cTji
+ (yVj

− yVi
)cCk

≤ 0. (5d)

We can summarize the monotonicity constraint in matrix form

Gc ≤ h, (6)

where G ∈ R10×16 and f ∈ R10×1. Further substitute (3)
into (6), we obtain the monotonicity constraint in terms of d

GRd ≤ h−Gf . (7)

More details on how we construct G and h are given in the
Appendix.

D. Optimization-based Solutions

To determine the unknown derivatives, we propose to min-
imize the total curvature of the interpolated surface under the
smoothness assumption. Directly computing the total curvature
is computationally intractable. Alternatively, we minimize the
curvature of Bézier curves at the edges of each microtriangle
as its approximation. Specifically, in ∆V0V1V2

, the objective
function is written as

LV0V1V2
= 1

2

∑2
i=0

∫
Ei

[
∂2z
∂E2

i

]2
dsEi +

∑2
i=0

∫
Êi

[
∂2z
∂Ê2

i

]2
dsÊi

, (8)

where the weight 1
2 is introduced to cancel the double counting

of the external edges.
Consider an external boundary Ei, whose Bézier control

net coefficients are zVj
, cTjk

, cTkj
, and zVk

. The integral of

the second order derivative of the Bézier curve on Ei can be
represented in terms of the four coefficients as

∫
Ei

[
∂2z

∂E2
i

]2

dsEi
=

1

‖Ei‖3

∫ 1

0

[
z
′′

Ei
(t)
]2
dt

=
18

‖Ei‖3
(2c2Tjk + 2c2Tkj

− 2cTjkcTkj)+

−36

‖Ei‖3
(zVj

cTjk + zVk
cTkj) +

12

‖Ei‖3
(z2
Vj

+ z2
Vk

+ zVj
zVk

)

=
[
cTjk

cTkj

] [ 36
‖Ei‖3

−18
‖Ei‖3

−18
‖Ei‖3

36
‖Ei‖3

] [
cTjk

cTkj

]
+

[ −36zVj

‖Ei‖3
−36zVk

‖Ei‖3

] [ cTjk

cTkj

]
+

12

‖Ei‖3
(z2
Vj

+ z2
Vk

+ zVj
zVk

), (9)

where

‖Ei‖ =
√

(xVj
− xVk

)2 + (yVj
− yVk

)2

is the length of Ei.
Similarly, we get the other part of the objective func-

tion from an internal boundary Êi, whose coefficients are
zVi , cIi1 , cIi2 , and cS .

∫
Êi

[
∂2z

∂Ê2
i

]2

dsÊi
=

1

‖Êi‖3

∫ 1

0

[
z
′′

Êi
(t)
]2
dt

=
6

‖Êi‖3
(6c2Ii1 + 6c2Ii2 + 2c2S − 6cIi1cIi2 − 6cIi2cS)+

12zVi

‖Êi‖3
(−3cIi1 + cS) +

12

‖Êi‖3
z2
Vi

=
[
cIi1 cIi2 cS

] 
36

‖Êi‖3
−18

‖Êi‖3 0

−18

‖Êi‖3
36

‖Êi‖3
−18

‖Êi‖3
0 −18

‖Êi‖3
12

‖Êi‖3


 cIi1
cIi2
cS



+
[ −36zVi

‖Êi‖3 0
12zVi

‖Êi‖3
] cIi1

cIi2
cS

+
12z2

Vi∥∥∥Êi∥∥∥3 , (10)

where

‖Êi‖ =
√

(xS − xVi
)2 + (yS − yVi

)2

is the length of Êi.
Substitute (9) and (10) into (8), we obtain the loss function

for ∆V0V1V2 in matrix form

LV0V1V2 = cTUV0V1V2c + wT
V0V1V2

c + const, (11)

where UV0V1V2
∈ R16×16 and wV0V1V2

∈ R16×1.
Substituting c = Rd + f into (11), we get

LV0V1V2
=(Rd + f)TUV0V1V2

(Rd + f)+

wT
V0V1V2

(Rd + f) + const

=dT (RTUV0V1V2
R)d+

(fTUV0V1V2
+ wT

V0V1V2
)Rd + const. (12)
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In summary, finding the axial-monotonic interpolant corre-
sponds to solving the following optimization problem

minimize
d

dT (RTUV0V1V2R)d + (fTUV0V1V2 + wT
V0V1V2

)Rd

subject to GRd ≤ h−Gf ,

deEi
+ deĒi

= 0.
(13)

Note that the constraints are linear with respect to d and
RTUV0V1V2R is positive-semidefinite. Thus, finding d turns
into a standard problem of quadratic programming, which
can be efficiently solved by the existing convex programming
packages [27].

E. Robust Axial-Monotonic Clough-Tocher Method

Here we propose our Robust Axial-Monotonic Clough-
Tocher (RAMCT) method. The inequality constraints in (6)
are sufficient conditions for x-axial monotonicity. However,
the sufficient conditions excessively shrink the solution space
in some extreme cases, making the primary solution infeasible.
To relax these constraints, we introduce hinge loss to some of
these inequalities, motivated by the success of Support Vector
Machine [28]. Specifically, the modified inequality constraints
are formulated as

(yVi − yVk
)cTij + (yVj − yVi)cTik

≤ (yVj − yVk
)zVi (14a)

(yVk
− yVj )cIi1 + (yVi − yVk

)cCk
+ (yVj − yVi)cCj + ξi1 ≤ 0 (14b)

(yV2 − yV1)cI02 + (yV0 − yV2)cI12 + (yV1 − yV0)cI22 ≤ 0 (14c)
(yS − yVj )cTij + (yVi − yS)cTji + (yVj − yVi)cCk

+ ξCk
≤ 0, (14d)

where ξ = [ξ11, ξ21, ξ31, ξC1
, ξC2

, ξC3
] are auxiliary variables

and ξ ≤ 0. Note that (14a),(14c) are identical to (5a),(5c)
because they are necessary conditions of axial monotonicity
(See Appendix for proof). Rewriting these constraints in the
matrix form, we obtain

[
G J1

O J2

] [
c
ξ

]
≤
[

h
0

]
,

where G and h are the same as in (6),(7). J2 is a 6×6 identity
matrix, while J1 ∈ R10×6 is obtained by padding J2 with 3
rows of zeros to its top and inserting a row of zeros between
the 3rd and 4th rows of J2.

By substituting (3) into the inequality above, we finally
obtain the inequality constraints in terms of the unknowns d
and the auxiliary variables ξ as[

GR J1

O J2

] [
d
ξ

]
≤
[

h−Gf
0

]
. (15)

The objective function is then modified accordingly,

LV0V1V2
= cTUV0V1V2

c + wT
V0V1V2

c− λT ξ + const, (16)

where λ = [λ, λ, · · · , λ]T is the weighting parameter. Substi-
tuting c = Rd + f into (16), we get

Algorithm 1: Uncertainty Sampling

Initialize S = ∅; Σ̄
(1)

= Σ ;
for k := 1 to K do

i(k) = minimize
i

tr(Σ̄
(k)
ii −

σ̄
(k)
i

T
σ̄

(k)
i

σ̄
(k)
ii

) ;

x(k) = VQA(Encode(r(k)
i ));

Set S = S ∪ x(k) ;

Σ̄
(k+1)

= Σ̄
(k)
ii −

σ̄
(k)
i

T
σ̄

(k)
i

σ̄
(k)
ii

;

if tr(Σ̄
(k)
ii −

σ̄
(k)
i

T
σ̄

(k)
i

σ̄ii
) ≤ T then

Break ;
end

end

LV0V1V2
= dT (RTUV0V1V2

R)d + (fTUV0V1V2
+

wT
V0V1V2

)Rd− λT ξ + const

=
[

dT ξT
] [ RTUV0V1V2

R O
O O

] [
d
ξ

]
+

[
(fTUV0V1V2 + wT

V0V1V2
)R −λT

] [ d
ξ

]
+ const.

(17)

Replacing (12),(6) with (17),(15) in (13), we find that the
original interpolation problem remains to be a quadratic pro-
gramming problem.

IV. INFORMATION-THEORETIC SAMPLING

In this section, we first explore the informativeness of
samples in the GRD space via a probabilistic model. We
then present an information-theoretic sampling strategy that
optimally selects the samples, offering enormous savings in
time and computational resources.

Let x = (x1, ..., xN ) be a vector of discrete samples on a
GRD function uniformly distributed in the bitrate-resolution
space, where N is the total number of sample points on
the grid. Given that the GRD function is smooth, when the
sampling grid is dense, these discrete samples provide a good
description of the continuous GRD function. In particular,
when the GRD function is band-limited, it can be fully
recovered from these samples when the sampling density is
larger than the Nyquist rate. Assuming x is created from GRD
functions of real-world video content, we model x as an N -
dimensional random variable, for which the probability density
function px(x) ∼ N (µ, Σ) follows a multivariate Normal
distribution. The total uncertainty of x is characterized by its
joint entropy given by

Hx(x) =
1

2
log |Σ|+ const, (18)

where | · | is the determinant operator. If the full vector x is

further divided into two parts such that x =

[
x1

x2

]
and Σ =[

Σ11 Σ12

Σ21 Σ22

]
, and the x2 portion has been resolved by x2 =
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Fig. 4. Empirical covariance matrix of the GRD functions. Bitrate and spatial
resolution are presented in ascending order, and spatial resolution elevates
every 90 samples.

a, then the remaining uncertainty is given by the conditional
entropy

Hx1|x2
(x1|x2 = a) =

1

2
log |Σ̄|) + const, (19)

where

Σ̄ = Σ11 −Σ12Σ
−1
22 Σ21. (20)

As a special case, we aim to find one sample that most
efficiently reduces the uncertainty of GRD estimation. This
is found by minimizing the log determinant of the conditional
covariance matrix [29]

minimize
i

log |Σ̄| = minimize
i

log |Σ̄ii −
σ̄Ti σ̄i
σ̄ii
|, (21)

where Σ̄ =

[
Σ̄ii σ̄i
σ̄Ti σ̄ii

]
and i is the row index of Σ̄.

Minimizing (21) directly is computationally expensive, es-
pecially when the dimensionality is high. Alternatively, we
minimize the upper bound of the conditional entropy

minimize
i

tr(Σ̄ii −
σ̄Ti σ̄i
σ̄ii

), (22)

where log |Σ̄ii − σ̄T
i σ̄i

σ̄ii
| ≤ tr(Σ̄ii − σ̄T

i σ̄i

σ̄ii
− I) and I denotes

identity matrix. The sample with the minimum average loss
in (22) over all viewing devices is most informative. Once
the optimal sample index is obtained, we encode the video
at the i-th representation, evaluate its quality with objective
VQA algorithms, and update the conditional covariance matrix
in (20). The process is applied iteratively until the overall
uncertainty in the system is reduced below a certain threshold
T . We summarize the proposed uncertainty sampling method
in Algorithm 1, where ri represents the bitrate and spatial
resolution at the i-th representation.

Remark: To get a sense of what type of samples will
be chosen by the proposed algorithm, we analyze several
influencing factors in the objective function (22):

• By the basic properties of trace, the objective function in
the uncertainty sampling can be factorized as

tr(Σ̄ii −
σ̄Ti σ̄i
σ̄ii

)

=tr(Σ̄ii)−
tr(σ̄Ti σ̄i)

σ̄ii

=tr(Σ̄)− (σ̄ii +
1

σ̄ii

∑
j 6=i

σ̄2
ij).

Thus, tr(Σ̄ii − σ̄T
i σ̄i

σ̄ii
) is a decreasing function with

respect to σ̄ii when σ̄ii >
√∑
j 6=i

σ̄2
ij . This indicates that

samples with large uncertainty are more likely to be
selected than those with small uncertainty.

• According to (20), ∀j 6= i,

σ̄
(k+1)
jj = σ̄

(k)
jj −

σ̄
(k)2

ij

σ̄
(k)
ii

,

suggesting the rate of reduction in the uncertainty of
sample j is proportional to its squared correlation with
the selected sample i in the k-th iteration. Fig. 4 shows
an empirical covariance matrix Σ̄ estimated from our
video dataset that will be detailed in the next section,
from which we observe that the GRD functions typically
exhibit high correlation in a local region. Combining the
first observation above, we conclude that the next optimal
choice of sample should be selected from the region
where labeled samples are sparse.

• Note that knowing that x2 = a alters the variance, though
the new variance does not depend on the specific value
of a. The independence has two important consequences.
First, the proposed sampling scheme is general enough
to accommodate GRD estimators from all classes. More
importantly, the algorithm results in a unique sampling
sequence for all GRD functions. In other words, we can
generate a lookup table of optimal querying order, making
the sampling process fully parallelizable.

V. EXPERIMENTS

In this section, we first describe the experimental setups
including our GRD function database, the implementation
details of the proposed algorithm, and the evaluation criteria.
We then compare the proposed algorithm with existing GRD
estimation methods.

A. Experimental setups

GRD Function Database: We construct a new video
database which contains 250 pristine videos that span a great
diversity of video content. An important consideration in
selecting the videos is that they need to be representative of
the videos we see in the daily life. Therefore, we resort to
the Internet and elaborately select 200 keywords to search
for creative common licensed videos. We initially obtain
more than 700 4K videos. Many of these videos contain
significant distortions, including heavy compression artifacts,
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TABLE I
MSE PERFORMANCE OF THE COMPETING GRD FUNCTION MODELS WITH DIFFERENT NUMBER OF LABELED SAMPLES SELECTED BY RANDOM

SAMPLING (RS) AND THE PROPOSED UNCERTAINTY SAMPLING (US). SMALLEST ERRORS ARE HIGHLIGHTED WITH BOLDFACE.

sample # Reciprocal [14] Logarithmic [8] PCHIP CT RAMCT
RS US RS US RS US RS US RS US

20 N.A. N.A. 23.07 13.33 68.76 26.49 88.54 56.04 135.27 16.10
30 62.27 83.34 13.08 10.56 30.95 2.06 37.99 22.78 10.98 3.29
50 38.11 73.88 9.43 6.77 8.64 0.07 11.75 12.16 4.70 0.06
75 30.27 48.85 5.15 4.92 3.08 0 4.84 3.26 1.01 0
100 27.44 38.46 4.60 4.18 1.77 0 2.75 1.26 0.13 0
540 24.51 24.51 2.76 2.76 0 0 0 0 0 0

TABLE II
l∞ PERFORMANCE OF THE COMPETING GRD FUNCTION MODELS WITH DIFFERENT NUMBER OF LABELED SAMPLES SELECTED BY RANDOM SAMPLING

(RS) AND THE PROPOSED UNCERTAINTY SAMPLING (US). SMALLEST ERRORS ARE HIGHLIGHTED WITH BOLDFACE.

sample # Reciprocal [14] Logarithmic [8] PCHIP CT RAMCT
RS US RS US RS US RS US RS US

20 N.A. N.A. 19.40 16.56 38.87 28.11 36.50 29.51 45.15 21.88
30 48.32 45.36 17.85 12.28 33.04 11.07 29.84 18.70 27.07 6.13
50 52.48 45.48 15.75 12.37 24.33 2.10 21.82 14.30 23.99 2.13
75 54.49 49.08 14.59 13.53 18.22 0.47 17.89 7.76 16.51 0.11
100 55.54 51.26 14.22 14.44 16.00 0.26 15.59 5.84 14.23 0
540 58.04 58.04 18.33 18.14 0 0 0 0 0 0

noise, blur, and other distortions due to improper operations
during video acquisition and sharing. To make sure that the
videos are of pristine quality, we carefully inspect each of
the videos multiple times by zooming in and remove those
videos with visible distortions. We further reduce artifacts and
other unwanted contaminations by downsampling the videos
to a size of 1920 × 1080 pixels, from which we extract 10
seconds semantically coherent video clips. Eventually, we end
up with 250 high quality videos.

Using the aforementioned sequences as the source, each
video is distorted by the following processes sequentially:
• Spatial downsample: We downsample source videos using

bi-cubic filter to six spatial resolutions (1920 × 1080,
1280 × 720, 720 × 480, 512 × 384, 384 × 288, 320 ×
240) according to the list of Netflix certified devices [7].

• H.264/HEVC/VP9 compression: We encoded the down-
sampled sequences using the three commonly used
video encoders with two-pass encoding. Specifically, the
x264 [30], x265 [31], and vpx-vp9 [32] libraries are
employed for H.264, HEVC and VP9 encoding, respec-
tively. In the experiment, we used two-pass encoding
to demonstrate the usefulness of RAMCT. However, the
proposed model can also be applied to one-pass encoding
when low latency is of major concern. Detailed encoding
specifications are given in the Appendix. The target
bitrate ranges from 100 kbps to 9 Mbps with a step size
of 100 kbps.

In total, we obtain 540 (hypothetical reference circuit) ×
250 (source) × 3 (encoder) = 405,000 video representations
(currently the largest in the VQA community). We evaluate the
quality of each video representation at five commonly used
display devices including cellphone, tablet, laptop, desktop,
and TV using SSIMplus [33] for the following reasons.
First, SSIMplus is currently the only HVS motivated spatial
resolution and display device-adapted VQA model that is
shown to outperform other state-of-the-art quality measures in

terms of accuracy and speed [33], [34]. Second, a simplified
VQA model SSIM [35] has been demonstrated to perform
well in estimating the GRD functions [8]. The resulting
dense samples of SSIMplus are regarded as the ground truth
of GRD functions (The range of SSIMplus is from 0 to
100 with 100 indicating perfect quality). However, our GRD
modeling approach does not constrain itself on any specific
VQA methods. When other ways of generating dense ground-
truth samples are available, the same GRD modeling approach
may also be applied.

Implementation Details: We initialize the scattered net-
work with delaunay triangulation [36], inherited from CT
method [19]. The balance weight λ in (16) is set to 10−4.
In our current experiments, the performance of the proposed
RAMCT is fairly insensitive to variations of the value. We
employed OSQP [27] to solve the quadratic programming
problem, where the maximum number of iterations is set to
106. The stopping criteria threshold T is set to 540 (the total
number of representation samples in the discretized GRD func-
tion space) × 10 (the standard deviation of mean opinion score
in the LIVE Video Quality Assessment database), resulting in
an average sample number of 38. When tr(Σ) is below the
threshold, we conclude that the uncertainty in the system can
be explained by the disagreement between subjects. Therefore,
further improvement in prediction accuracy may not be as
meaningful. Since a triangulation only covers the convex hull
of the scattered point set, extrapolation beyond the convex
hull is not possible. In order to make a fair comparison,
we initialize the training set S as the representations with
maximum and minimum bitrates at all spatial resolutions. To
construct the covariance matrix described in Section IV as well
as test the proposed algorithm, we randomly segregated the
database into a training set of 200 GRD functions and a testing
set with 50 GRD functions. The random split is repeated 50
times and the median performance is reported.

Evaluation Criteria: We test the performance of the GRD
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estimators in terms of both accuracy and rate of convergence.
Specifically, we used two metrics to evaluate the accuracy. The
mean squared error (MSE) and l∞ norm of the error values
are computed between the estimated function and the actual
function for each source content. The median results are then
computed over all testing functions. All interpolation models
can fit increasingly complex GRD functions at the cost of
using many parameters. What distinguishes these models from
each other is the rate and manner with which the quality of
the approximation varies with the number of training samples.

B. Performance
We test five GRD function models including reciprocal

regression [6], logarithmic regression [8], 1D piecewise cubic
Hermite interpolating polynomial (PCHIP), CT interpolation,
and the proposed RAMCT on the aforementioned database.
To evaluate the performance of the uncertainty sampling
algorithm, we apply it on the five GRD models above and
compare its performance with random sampling scheme as
the baseline. For random sampling, the initial set of training
sample S is set as the representations with the maximum
and minimum bitrates at all spatial resolutions to allow fair
comparison. The training process with random sampling was
repeated 50 times and the median performance is reported.

Table I and II show the prediction accuracy on the database,
from which the key observations are summarized as follows.
First, the models that assume a certain analytic functional form
are consistently biased, failing to accurately fit GRD functions
even with all samples probed. On the other hand, the existing
interpolation models usually take more than 100 random sam-
ples to converge, although they are asymptotically unbiased.
By contrast, the proposed RAMCT model converges with only
a moderate number of samples. Second, we analyze the core
contributors of RAMCT with deliberate selection of competing
models. Both the RAMCT and the PCHIP models outperform
the traditional CT model, suggesting the importance of axial
monotonicity. Besides, the RAMCT model achieves better per-
formance than the PCHIP model by exploiting the 2D structure
and jointly modeling the GRD functions. Third, we observe
strong generalizability of the proposed uncertainty sampling
strategy evident by the significant improvement over random
sampling on all models. The performance improvement is
most salient on the proposed model. In general, RAMCT
is able to accurately model GRD functions with only 30
labeled samples, based on which the reciprocal model merely
have sufficient known variables to initialize fitting. To gain a
concrete impression, we also recorded the execution time of
the entire GRD estimation pipeline including video encoding,
objective VQA, and GRD function approximation with the
competing algorithms on a computer with 3.6GHz CPU and
16G RAM. RAMCT with uncertainty sampling takes around
10 minutes to reduce l∞ below 5, which is more than 100
times faster than the tradition regression models with random
sampling.

C. Performance with other VQA models
The proposed RAMCT model does not constrain itself to

a specific VQA measure. To demonstrate this, we use the

RAMCT model to construct GRD functions measured by
another widely used VQA model, peak signal-to-noise ratio
(PSNR). We follow similar experimental setups as described
in Section V-A and V-B except employing PSNR as the VQA
measure, and that only the uncertainty sampling strategy is
used. The experimental results are summarized in Table III,
from which we find that the RAMCT method well generalizes
to the PSNR metric. This is because the RAMCT model is
based on the common properties of GRD functions rather than
the peculiarities of a specific VQA model.

D. Performance with High Dynamic Range Videos

In recent years, high dynamic range (HDR) videos are
becoming increasingly popular [39]. It is desired know how the
RAMCT model generalizes to GRD functions of HDR videos.
We test the RAMCT model with the uncertainty sampling
method on the Waterloo UHD-HDR-WCG database [37],
which consists of 15 different HDR video contents. Specif-
ically, we downsample the 15 videos to 1080P, and treat them
as the reference. These videos are then downsampled and
compressed into 540 representations following the same pro-
cedures as described in Section V-A. We select SR-SIM [38]
as the VQA model, which exhibits the highest correlation
with subjective opinions in previous experiments [37], and
re-scale the SR-SIM scores from [0, 1] to [0, 100] for better
presentation. The experimental results are listed in Table IV,
from which we can see that the RAMCT model performs
consistently well in reconstructing GRD functions of HDR
videos with a new VQA metric. The results not only further
attest that the proposed RAMCT model is robust to different
VQA metrics, but also indicate that RAMCT generalizes well
to HDR videos. This may be ascribed to the fact that the
constraints of the RAMCT model are primarily derived from
the RD theory, which applies to any kinds of signal.

VI. APPLICATIONS

The application scope of GRD model is much broader than
VQA. Here we demonstrate three use cases.

A. Rate-Distortion Curve at Novel Resolutions

Given a set of RD curves at multiple resolutions, it is
desirable to predict the RD performance at novel resolutions,
especially when there exists a mismatch between the supported
viewing device of downstream content delivery network and
the recommended encoding profiles. Traditional methods lin-
early interpolate the RD curve at novel resolutions [7], neglect-
ing the characteristics of GRD functions. Fig. 5 compares the
linearly interpolated and RAMCT-interpolated RD curves at
960×540 with the ground truth SSIMplus curve, from which
we have several observations. First, the linearly interpolated
curve shares the same intersection with the neighboring curves
at 740×480 and 1280×720, inducing consistent bias to the
prediction. The proposed RAMCT model is able to accurately
predict the quality at the intersection of the neighboring curves
by taking all known RD curves into consideration. Second,
the linearly interpolated RD curve always lies between its
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TABLE III
MSE AND l∞ PERFORMANCES OF THE COMPETING MODELS WITH THE PSNR METRIC. SMALLEST MSE AND l∞ ERRORS ARE HIGHLIGHTED WITH

ITALICS OR BOLDFACE, RESPECTIVELY.

sample # Reciprocal [14] Logarithmic [8] PCHIP CT RAMCT
MSE l∞ MSE l∞ MSE l∞ MSE l∞ MSE l∞

20 N.A. N.A. 0.08 1.30 0.34 2.20 0.47 2.28 0.18 2.36
30 4.56 10.28 0.05 0.86 0.07 1.09 1.33 2.20 0.04 1.08
50 5.07 9.74 0.04 0.85 0 0.53 0.11 1.20 0 0.38
75 3.85 10.85 0.03 0.94 0 0.27 0.05 0.85 0 0.24
100 3.38 11.47 0.03 1.02 0 0.14 0.02 0.66 0 0.16
540 2.46 12.98 0.02 1.30 0 0 0 0 0 0

TABLE IV
MSE AND l∞ PERFORMANCE OF THE COMPETING MODELS ON HDR VIDEOS [37] WITH THE SRSIM METRIC [38]. SMALLEST MSE AND l∞ ERRORS

ARE HIGHLIGHTED WITH ITALICS OR BOLDFACE, RESPECTIVELY.

sample # Reciprocal [14] Logarithmic [8] PCHIP CT RAMCT
MSE l∞ MSE l∞ MSE l∞ MSE l∞ MSE l∞

20 N.A. N.A. 0.49 1.88 3.63 4.79 3.64 5.75 2.06 3.33
30 3.67 7.47 0.36 1.75 1.34 3.99 4.39 7.28 0.34 2.26
50 2.97 7.52 0.18 1.41 0.03 0.99 1.27 3.45 0.03 0.46
75 2.04 7.44 0.14 1.43 0 0.26 0.05 0.73 0 0.26
100 1.57 7.62 0.09 1.53 0 0.09 0.03 0.69 0 0.21
540 0.89 9.28 0.06 2.01 0 0 0 0 0 0

100 200 300 400 500 600 700
bitrate

65

70

75

80

85

90

SS
IM

pl
us

Actual 720x480
Actual 1280x720
Actual 960x540

(a)

100 200 300 400 500 600 700
bitrate

65

70

75

80

85

90

SS
IM

pl
us

Actual 720x480
Actual 1280x720
Actual 960x540
Linear prediction
960x540

(b)

100 200 300 400 500 600 700
bitrate

65

70

75

80

85

90

SS
IM

pl
us

Actual 720x480
Actual 1280x720
Actual 960x540
RAMCT prediction
960x540

(c)

Fig. 5. Prediction of RD curve of novel resolution from known RD curves of other resolutions. (a) Ground truth RD curves; (b) Prediction of 960×540 RD
curve from 720×480 and 1280×720 curves using linear interpolation; (c) Prediction of 960×540 RD curve using the proposed method.

TABLE V
PERFORMANCE OF LINEAR INTERPOLATION AND RAMCT ON

PREDICTING THE RD FUNCTION AT A NOVEL RESOLUTION.

Resolution l∞ MSE
Linear RAMCT Linear RAMCT

640×360 7.68 3.12 7.89 1.56
960×540 7.66 4.83 6.61 3.14

1600×900 8.77 7.87 5.18 4.98
Average 8.04 5.27 6.56 3.23

neighboring curves, suggesting that the predicted quality at
any bitrate is lower than the quality on one of its neighboring
curves. This behavior contradicts the fact that each resolution
may have a bitrate region in which it outperforms other resolu-
tions [7]. On the contrary, RAMCT better preserves the general
trend of resolution-quality curve at different bitrate, thanks to
the regularization imposed by the C1 condition at given nodes.
Third, RAMCT outperforms the linear interpolation model in
predicting the ground truth RD curve across all bitrates. The
experimental results also justify the effectiveness of the C1

and smoothness prior used in RAMCT.

To further validate the performance of the proposed GRD
model at novel spatial resolutions, we predict the RD curves of
20 randomly selected source videos from the dataset at three
novel resolutions (640×360, 960×540, and 1600×900). The
evaluated bitrate ranges from 100 kbps to 9 Mbps with a step
size of 100 kbps. The results are listed in Table V. We can
observe that RAMCT outperforms the linear model [7] with a
clear margin at novel resolutions.

B. Per-Title Encoding Profile Generation

To overcome the heterogeneity in users’ network conditions
and display devices, video service providers often encode
videos at multiple bitrates and spatial resolutions. However,
the selection of the encoding profiles are either hard-coded,
resulting in sub-optimal QoE due to the negligence of the
difference in source video complexities, or selected based on
interactive objective measurement and subjective judgement
that are inconsistent and time-consuming. To deliver the best
quality video to consumers, each title should receive a unique
bitrate ladder, tailored to its specific complexity characteristics.
This process is known as per-title optimization. We will show
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Fig. 6. Bitrate ladders generated by the recommendations and the proposed algorithm for three contents.

TABLE VI
AVERAGE BITRATE SAVING OF ENCODING PROFILES. NEGATIVE VALUES

INDICATE ACTUAL BITRATE REDUCTION.

Microsoft Apple Netflix Proposed
Microsoft 0 - - -

Apple -25.3% 0 - -
Netflix -29.3% -5.6% 0 -

Proposed -62.0% -48.9% -46.8% 0

the pivotal role of the proposed RAMCT model in a quality-
driven per-title optimization framework.

Content delivery networks often aim to deliver videos at
certain quality levels to satisfy different viewers. It is ben-
eficial to minimize the bitrate usage in the encoding profile
when achieving the objective. Mathematically, the quality-
driven bitrate ladder selection problem can be formulated as
a constrained optimization problem. Specifically, for the i-th
representation,

minimize
{x,y}

x

subject to f(x, y) ≥ Ci, i = 1, . . . ,m,

where x, y, f(·, ·), Ci and m represent the bitrate, the spatial
resolution, the GRD function, the target quality level of video
representation i, and the total number of video representations,
respectively. Solving the optimization problem requires precise
knowledge of the GRD function. Thanks to the effectiveness
and differentiability of RAMCT, the proposed model can be
incorporated with gradient-based optimization tools [40] to
solve the per-title optimization problem. (Interested readers
may refer to the Appendix for more details on how we solve
the optimization problem).

To validate the proposed per-title encoding profile selection
algorithm, we apply the algorithm to generate bitrate ladders
using H.264 [41] for 50 randomly selected videos in the afore-
mentioned dataset. We set the target quality levels {Ci}10

i=1 as
{30, 40, 50, 60, 70, 75, 80, 85, 90, 95} to cover diverse quality
range and to match the total number of representations in
standard recommendations [6]. For simplicity, we optimize the
representation sets for only one viewing device (cellphone),
while the procedure can be readily extended to multiple
devices to generate a more comprehensive representation set.
In Fig. 6, we compare the rate-quality curve of representation
sets generated by the proposed algorithm to the hard-coded

bitrate ladders recommended by Netflix [42], Apple [43], and
Microsoft [44] for three videos with different complexities,
from which the key observations are as follows. First, con-
trasting the hand-crafted bitrate ladders, the encoding profile
generated by the proposed algorithm is content adaptive.
Specifically, the encoding bitrate increases with respect to the
complexity of the source video as illustrated from Fig. 6(a) to
Fig. 6(c). Second, the proposed method achieves the highest
quality at all bitrate levels. The performance improvement
is mainly introduced by the encoding strategy at the convex
hull encompassing the individual per-resolution RD curves [7].
Table VI provides a full summary of the Bjøntegaard-Delta
bitrate (BD-Rate) [45], indicating the required overhead in
bitrate to achieve the same SSIMplus values. We observe
that the proposed framework outperforms the existing hard-
coded bitrate ladders by at least 47%. Since the Netflix [42],
Apple [43], and Microsoft [44] recommendations may be
tuned with PSNR rather than SSIMplus [33], we also conduct
a similar experiment using PSNR as the quality measure for
fair comparison. Similar results are observed, showing the
robustness of the RAMCT model in the context of per-title
optimization. Interested readers may refer to the Appendix for
more details.

C. Encoder Comparison
In the past decade, there has been a tremendous growth in

video compression algorithms and implementations, thanks to
the fast development of computational multimedia. With many
video encoders at hand, it becomes pivotal to compare their
performance, so as to find the best algorithm as well as direc-
tions for further advancement. Bjøntegaard-Delta model [17],
[45] has become the most commonly used objective coding
efficiency measurement. Bjøntegaard-Delta PSNR (BD-PSNR)
and BD-Rate are typically computed as the difference in bitrate
and quality (measured in PSNR) based on the interpolated rate-
distortion curves

QBD =

∫ xH

xL
[zB(x)− zA(x)]dx∫ xH

xL
dx

, (23a)

RBD ≈10

∫ zH
zL

[xB(z)−xA(z)]dz∫ zH
zL

dz − 1, (23b)

where xA and xB are the logarithmic-scale bitrate, zA and zB
are the quality of the interpolated reference and test bitrate
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curves, respectively. [xL, xH ] and [zL, zH ] are the effective
domain and range of the rate-distortion curves. However,
BD-PSNR and BD-Rate do not take spatial resolution into
consideration. Fig. 7 shows two GRD surfaces generated by
x264 [30] and x265 [31] encoders for a source video. Although
H.264 performs on par with HEVC at low resolutions, it
requires higher bitrate to achieve the same target quality at
high resolutions. Therefore, applying BD-Rate on a single
resolution is not sufficient to fairly compare the overall
performance between encoders. To this regard, we propose
generalized quality gain (Qgain) and rate gain (Rgain) models
as

Qgain =

∫
U

∫ yH
yL

∫ xH

xL
p(u)[zB(x, y, u)− zA(x, y, u)]dxdydu∫ yH

yL

∫ xH

xL
dxdy

,

(24a)

Rgain ≈10

∫
U

∫yH
yL

∫ zH
zL

p(u)[xB(z,y,u)−xA(z,y,u)]dzdydu∫
U

∫yH
yL

∫ zH
zL

p(u)dzdydu − 1, (24b)

where p(u), U , and [yL, yH ] represent the probability density
of viewing devices, the set of all device of interests, and the do-
main of video spatial resolution, respectively. The generalized
Qgain and Rgain models represent the expected quality gain
and the expected bitrate gain (saving when Rgain negative)
across all spatial resolutions and viewing devices, leading
to a more comprehensive evaluation of practical encoders.
It should be noted that zA(x, y, u) is essentially the GRD
function of codec A, which can be efficiently approximated
by the proposed model. xA(z, y, u) can also be estimated
numerically from the interpolated surface. (Interested readers
may refer to the Appendix for more details on how we
compute Qgain and Rgain.) Therefore, RAMCT is a natural
fit to the generalized Qgain and Rgain models. The effect of
any individual influencing factor can be obtained by taking the
marginal expectation in the corresponding dimension, which
is more robust than BD-PSNR and BD-Rate at a single
resolution.

In summary, we show that the proposed RAMCT model
can help compare two video encoders more comprehensively
than BD-PSNR and BD-Rate [17], [45]. However, it should
be noted that such comparison is only restricted to the specific
encoder implementations and configurations, and does not take
into consideration time complexities.

VII. CONCLUSIONS

GRD functions represent the critical link between multi-
media resource and perceptual QoE. In this work, we pro-
posed a learning framework to model the GRD function by
exploiting the properties all GRD functions share and the
information redundancy of training samples. The framework
leads to an efficient algorithm that demonstrates state-of-the-
art performance, which we believe arises from the RAMCT
model for imposing axial monotonicity, the joint modeling
of the multi-dimensional GRD function for exploiting its
functional structure, and the information-theoretic sampling
algorithm for improving the quality of training samples. Ex-
tensive experiments have shown that the algorithm is able
to accurately model the function with a very small number
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Fig. 7. GRD surfaces of H.264 [30] and HEVC [31] encoders for a sample
source video.

of training samples. Furthermore, we demonstrate that the
proposed GRD model plays a central role in a great variety
of visual communication applications.

The current work can be extended in many ways. As
a basis for future work, we note that the interpolant can
be readily extended to higher dimensions [24], making it
applicable to more general applications. For example, in the
fields of machine learning [29] and data visualization [46],
flexible monotonic interpolation can provide regularization and
makes the model more interpretable. Another promising future
direction is to develop models that can predict GRD functions
without sampling the GRD space.
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