

Impulse Noise Removal

Using Polynomial Approximation

David Zhang and Zhou Wang

Department of Computer Science

City University of Hong Kong

Hong Kong

Corresponding author:

Dr. David Zhang

Department of Computer Science

City University of Hong Kong

Kowloon, Hong Kong

Phone: (852) 2788-7022

Fax: (852) 2788-8614

E-mail: dapeng@cs.cityu.edu.hk

�Impulse Noise Removal Using Polynomial Approximation

Abstract. In this paper, a novel filtering algorithm is presented to restore images corrupted by impulsive noise. As a pre-processing procedure of the noise cancellation filter, an
improved
impulse detector is used to generate a binary flag image which gives each pixel a flag indicating whether it is an impulse. This flag image has two uses: 1. A pixel is modified only when it is considered as an impulse
;

o
therwise, it is left unchanged. 2. Only the values of the good pixels are employed as useful information by the noise cancellation filter. To remove noises from the corrupted image, we propose a new filter called polynomial approximation (PA) filter which is developed by modeling a local region with a polynomial that can best approximate the region under the condition of least square error. Furthermore, an adaptive
approach
 is introduced to automatically determine the orders of the polynomials.
The proposed two kinds of
PA filters
,

fixed-order and adaptive-order PA filters
,
 are tested on images corrupted by both fixed-valued and random-valued impulsive noise. Major improvements are obtained in comparison with other state-of-the-art algorithms.

Subject terms: image enhancement; image filter; impulse noise; noise detection; noise filtering; polynomial approximation.

1 Introduction

Images are often contaminated by impulse noise during transmission through communication channels. It is important to eliminate noise in the images before some subsequent processing, such as edge detection, image segmentation and object recognition. So far a large variety of filtering algorithms have been proposed to perform an effective noise cancellation while preserving the image structure.1-12 Typical examples include the neighborhood mean filter and the median filter.

Nevertheless, because these filters are implemented uniformly across the image, they tend to modify both noise pixels and undisturbed good pixels, resulting in blurring of the image. To avoid the damage of good pixels, the switching strategy is introduced by some recently published work
,
1-3, 9-12 where impulse detectors are employed to pre-select the pixels that should be modified. This kind of techniques has proved to be more effective than uniformly applied methods.

The approach we are proposing also uses an impulse detector to categorize all the pixels in the image into two classes (noise pixels and good pixels, i.e., noise-free pixels. These classification results are used in two ways during the filtering procedure. First, only pixels indexed as impulses will be modified. Second, the filter
 uses
merely
the information of noise-free pixels as the source to estimate the corrupted pixel values.

To replace an impulse pixel with a new value, various methods can be developed to make an estimation. However, almost all previously published algorithms, as far as we know, replace the corrupted value with one from a local window or some linear combination of local samples. In other words, only ranking or statistic information of neighboring pixel values is employed. These kinds of information, we think, is not enough to represent the real structure, such as direction and curvature, of the local region. Substantially different from previous algorithms, our new approach is developed by modeling the local region using some function approximation algorithms, so that it can tell the structure of the local window. The center corrupted pixel is then replaced with a value that can best comply with the structural information. In particular, polynomial approximation technique is used in the paper, which is easy to operate and is effective in modeling local regions.

This paper is organized as follows: Section 2 describes the impulse noise model assumed by our experiments and presents an iterative impulse detection algorithm which provides us with more accurate detecting results than those of previously proposed methods. In Section 3, the polynomial approximation (PA) filter is introduced. Section 4 studies the influence of the polynomial order on the PA filter and proposes an adaptive
-
order
polyno
mial
appro
xi
mation

(AOPA) filter which can automatically determine the polynomial order by investigating some statistic features of local regions. Some further simulation and comparison results are given in Section 5. Finally, a brief conclusion is drawn in Section 6.

2 Noise Model and Impulse Detector

2.1 Impulse Noise Model

Images may be contaminated by various sorts of noises. The type of noise considered by our algorithm is only impulsive noise whose value is generally independent of the strength of the image signal. Let oij and xij denote the gray levels at location (i, j) of the original image and the noisy image, respectively. Then for an impulse noise model with noise probability pn, we have

� EMBED Equation.2 ��� ,

(1)

where nij is a noise value independent from oij. In this paper, two cases of noise distributions are considered. In
the first
 case, the values of the corrupted pixels equal to the maximum or minimum of the allowed dynamic range with equal probability. This kind of noise is commonly referred to as salt-pepper noise. In the other case, the corrupted pixel values are uniformly distributed between the maximum and minimum allowed dynamic range. For 8bpp (bits/pixel) gray level images, the noise luminance of the first case corresponds to a fixed value of 0 or 255 with equal probability, while that of the second case corresponds to a random value uniformly distributed between 0 and 255.

2.2 Impulse Detector

Our impulse detection algorithm is developed based on two assumptions: 1. A noise-free image should be locally smoothly varying, and is separated by edges 3 ; 2. A noise pixel takes a gray value substantially larger than or smaller than those of its neighbors.

Sun and Neuvo introduced a simple and effective method to detect noises in their switch I scheme 3. We briefly describe it as follows: Let xij represents the pixel values at position (i, j) in the corrupted image. To judge whether xij is an impulse pixel, we find the median value of the samples in the (2Ld+1)((2Ld+1) window centered about it, i.e.,

mij = Med{� EMBED Equation.2 ���, … , xi,j , … , � EMBED Equation.2 ��� } .

(2)

The difference between
mij
 and xi,j is used to detect impulses:

� EMBED Equation.2 ��� . (3)

Here Td is a pre-defined threshold value. The binary value fij indicates whether (i, j) is considered as an impulse, i.e., fij = 1 means (i, j) is a corrupted pixel; otherwise, (i, j) is noise-free.

This detection method is adopted by our algorithm. In addition, we also developed a modified version to improve detection accuracy. The modified version is implemented through an iterative manner. Let � EMBED Equation.2 ��� denote the pixel value at position (i, j) in the initial noisy image and � EMBED Equation.2 ��� represent the pixel value at position (i, j) in the image after the n-th iteration. In the n-th iteration (n = 1, 2, …), for each pixel � EMBED Equation.2 ���, we also first find the median value of the samples in a (2Ld+1)((2Ld+1) window centered about it:

� EMBED Equation.2 ��� = Med {� EMBED Equation.2 ���, … , � EMBED Equation.2 ��� , … , � EMBED Equation.2 ��� }.

(4)

The difference between � EMBED Equation.2 ��� and � EMBED Equation.2 ��� is the criterion to determine whether � EMBED Equation.2 ��� should be changed:

� EMBED Equation.2 ��� . (5)

Suppose the iteration stops after the Nd-th iteration. The flag value fij is then given as:

� EMBED Equation.2 ��� . (6)

Before the real implementation of our impulse detector, several parameters, Ld, Td and Nd, should be pre-determined. In our simulations, 3(3 sized window always gives better results than larger windows, so we choose Ld = 1.
However, it is
not so ea
sy
 to select
 Td and Nd because they are sensitive to the type of the noise. Fig. 1 and Fig. 2 show typical examples of the detection correct rates as functions of Td and Nd for fixed-valued and random-valued impulsive noise, respectively. Here, if E
is
denote
d

as
the number of good pixels that are correctly detected as good pixels, F
a
s
 the number of noise pixels that are correctly detected as noise pixels and G
a
s the total number of pixels in the image, then the detection correct rate is calculated as (E + F) / G.
In
Fig. 1 and Fig. 2, it
appears that the best res
ults can be
obtained

from
 2 or 3 iterations
 when the images are corrupted by fixed-valued noise
,
 while for the case of random-valued noise, no iteration is needed, i.e., Nd = 1 is the best. It
 can be
also
observed that the best Td for fixed-valued noise is larger than that for random-valued noise.
According to
the above
 facts
, we always use Td = 35 and Nd = 3 for fixed-valued impulse noise and Td = 20 and Nd = 1 (i.e., no iteration) for random-valued impulse noise

in the remaining part of this paper
.

3 Polynomial Approximation (PA) Filter

Consider a (2Lf+1)((2Lf+1) square region centered about an impulse pixel (i0, j0) with � EMBED Equation.2 ���= 1. The pixels in it can be categorized into two classes (good pixels (fij = 0) and impulse pixels (fij = 1). Only good pixels are used by the PA filter which models the local region using a two-dimension polynomial. For simplicity, we shift the position of the center pixel (i0, j0) to (0, 0) and normalize the square region so that its top-left corner and bottom-right corner are located at ((1, (1) and (+1, +1), respectively:

ypq = xij , (7)

where ypq is the pixel value under the new coordinate and we have

p = (i (i0) / Lf ; q = (j (j0) / Lf . (8)

Then the approximation polynomial can be denoted as:

� EMBED Equation.2 ���, (9)

where

{

cmn

(

m

= 0,
(

,
K

;

n
 = 0,
(

,
m

(

K

}

is a set of

coefficients
 and

K is the order of the polynomial
. For example, a 2-order polynomial can be written as:

� EMBED Equation.2 ���. (10)

The
calculate
d value of � EMBED Equation.2 ��� can be used to estimate the value of xij:

� EMBED Equation.2 ��� , (11)

where

i = i0 + p(Lf ; j = j0 + q(Lf . (12)

The
set of
coefficients
{
 cmn

}
 should be well selected, so that the good pixels in the local region are best approximated under the condition of least square error. The square error is calculated as:

� EMBED Equation.2 ��� . (13)

The minimum of E is achieved when the deviation of E with respect to
every
 cmn
 are
all
0:

� EMBED Equation.2 ��� (m = 0, (, K ; n = 0, (, K (m) . (14)

By solving these equations, the value
 of
each
cmn
 can be obtained. Finally, the center pixel

� EMBED Equation.2 ���
is replaced by the estimated value:

� EMBED Equation.2 ���. (15)

As a special case, the 0-order PA filter has only one coefficient c00 and the solution of (14) is simply

� EMBED Equation.2 ��� . (16)

That is, c00 equals to the average value of the good pixels in the square region. Therefore, the 0-order PA filter can also be viewed as a noise-free neighborhood mean filter.

�
4 Adaptive Order PA (AOPA) Filter

4.1 A Study on Polynomial Order

Only two parameters, Lf and K, should be pre-defined before the application of the PA filter. Our simulations indicate that in most cases 5(5 sized square region is the best for the performance of the polynomial approximation algorithm, so we set Lf = 2. To determine the polynomial order K is not an easy task. The proper value of K depends on how many details are embraced in the local region and how much the region is corrupted. In this subsection, we investigate the performance of fixed-order PA (FOPA) filter where the value of K is invariable throughout the whole image. Then in the next subsection, an adaptive order PA (AOPA) filter is introduced where K is adjusted to comply with some local statistic features. In all the experiments, the test images are 512(512, 8bpp gray level images. Peak Signal-to-Noise Ratio (PSNR) is used to assess the filtering results:

PSNR = � EMBED Equation.2 ��� (17)

where r is the size of the image (r = 512), oij and tij are the pixel values at position (i, j) within the original image and the test image, respectively.

In Table 1 and Table 2, we list the filtering results of 0, 1, 2 and 3-order PA filters, where the original image “Lena” is corrupted with 10% ~ 30% fixed-valued and random-valued impulse noise, respectively. Basically, higher polynomial order, such as 2-order or 3-order, leads to higher PSNR. The reason is simpl
e
 because higher order polynomials can reflect more complex characteristics, such as direction and curvature, of local regions. However, this is not always true especially when the noise rates are high. For instance, the PSNR performance of 2-order PA filter for 30% random-valued impulse noise is 30.87dB, which is
substantially
 higher than 29.67dB of 3-order PA filter. We think the main reason is that low order polynomials are more robust than high order
one
s. To demonstrate
it
 clearly, we give a simple one-dimension example
(see
 Fig. 3
),
 where both a 2-order and a 3-order polynomial
 are used to estimate the point at 0.00 using the five sample points provided. Both of them are obtained under the condition of least square error. It can be observed that although the 3-order polynomial curve performs better in approximating the sample points, i.e., the curve is closer to the sample points, the estimated value for the point at 0.00 seems too high, not as good as that estimated by the 2-order polynomial. This phenomenon is sometimes called over-matching. Another drawback of high order PA is that it leads to high computation burden, which is not deserved especially when dealing with very smooth regions. For such kind of region, a 0-order or a 1-order polynomial is enough to give a good approximation
within much less time.

4.2 Adaptive-Order PA (AOPA) Filter

For a certain region in the image, an appropriate choice of the polynomial order is determined mainly by two factors. The first
 is how many details the region contains and the second is how much the region is contaminated. Our AOPA filter is developed
according to
 some quantitative evaluations on these two factors.

Before the description of the AOPA filter, however, we first introduce a pre-processing 3(3 mask which is applied to all the good pixels throughout the image to estimate image details. The mask is defined as:

� EMBED Equation.2 ��� , (18)

where

� EMBED Equation.2 ��� . (19)

Each good pixel in the image is then given a detail estimation value � EMBED Equation.2 ���. At (i0, j0) with � EMBED Equation.2 ��� = 0, we have

� EMBED Equation.2 ��� (20)

where

� EMBED Equation.2 ��� (21)

Actually, the mask used here is a revised version of one of the Laplacian masks,1 which are useful in detect
ing
 lines, line ends and points over edges. The only difference is that it
mere
ly consider
s
 good neighboring pixels with fij = 0. In other words, the typical Laplacian mask is a special case of our revised version where all fij = 0. We call our new mask noise-free Laplacian filter which is capable of evaluate how many details a certain area of the image contains even
under the condition that

impulse noises
exist
 in the image.

Now we describe how our AOPA filter determines the polynomial order. For an impulse pixel at position (i0, j0), we still use the information within a (2Lf+1)((2Lf+1) window centered about it as the source to give an estimation on the pixel. First, we count how many good pixels are in the window:

� EMBED Equation.2 ���. (22)

Second, a quantitative estimation on how much the local region is corrupted is given as:

� EMBED Equation.2 ���. (23)

Next, a rough estimation on how many details the local region contains is calculated as follows:

� EMBED Equation.2 ��� . (24)

Note that only good pixels in the window are considered. Our adaptive algorithm decides the order of the polynomial by combining the influences of both of these two factors u and v. The synthesized value is defined as:

� EMBED Equation.2 ���, (25)

where the use of a and b is to offer us with the flexibility to adjust the weights of u and v. Finally, the polynomial order is provided as:

� EMBED Equation.2
�
�
� , (26)

where � EMBED Equation.2 ���, � EMBED Equation.2 ���, � EMBED Equation.2 ���, � EMBED Equation.2 ��� and � EMBED Equation.2 ��� denote the estimated value of the AOPA, 0-order PA, 1-order PA, 2-order PA and 3-order PA techniques, respectively. � EMBED Equation.2 ���, � EMBED Equation.2 ��� and � EMBED Equation.2 ��� are threshold values that categorize � EMBED Equation.2 ��� into one of four classes.

5 Simulations and Comparisons

To assess the performance of our algorithms, some computer simulations are carried out on several standard gray level images. In all the experiments concerning the AOPA filter, the parameters are selected as follows:

a = 3, b = 1, � EMBED Equation.2 ��� = 0.5, � EMBED Equation.2 ��� = 0.8 and � EMBED Equation.2 ��� = 3.0 (27)

Table 1 and Table 2 give the PSNR performance of 0-order PA, 1-order PA, 2-order PA, 3-order PA and AOPA filters, where the original image “Lena” is corrupted with 10% ~ 30% fixed-valued and random-valued impulse noise, respectively. In each case, the best result
among
the 0, 1, 2 and 3-order PA filters is printed in bold. When the noise rate is low, the best result is usually obtained by the 3-order PA filter
. However,

with the increase of noise rate, 2-order PA filter gradually outperforms 3-order PA filter. The performance of AOPA filter traces the best result of the four FOPA filters. Its PSNR is sometimes slight higher or sometimes slightly lower than the best of the four. The last rows of the two tables present the differences
of
 the PSNR performance between the AOPA filter and the best of the four FOPA filters. The absolute values of the differences are always very close to 0, ranging from 0.00 dB to 0.04 dB. Obviously, we will prefer the AOPA filter in real applications because for a given corrupted image, it is difficult for us to pre-determine which of the four FOPA filters is the best. In addition, in comparison with high-order FOPA filters, the AOPA filter may, in some way, save computing time because some of the regions are approximated by low-order polynomials. For example, for the case that the image “Lena” is corrupted by 30% fixed-valued impulse noise, 32.19% of the noise pixels are filtered by 0-order PA method, 23.05% by 1-order PA method, 38.71% by 2-order PA method and only 6.04% are filtered by 3-order PA method. Since 0 and 1-order PA methods perform much faster than 2 and 3-order PA techniques, a lot of time can be saved by AOPA filter in comparison with pure 2 or 3-order PA filters. It is worth note that even though most of the noise pixels are not filtered by 2-order PA technique, the PSNR performance of the AOPA filter is very close to that of the 2-order PA filter which is significantly better than the other 3 FOPA filters. In Fig. 4, we compare the performance speed of different PA filters, where the AOPA filter uses some extra time to classify each impulse pixel to be filtered by one of the
four
 PA techniques. It appears that
a
3-order PA filter always need
s
 much more time than
other PA filters. The computing time of AOPA filter is close to 2-order PA filter. When noise rate is low, the pure 2-order PA filter spends less time. We think such a litter bit of more time is deserved because the PSNR performance of AOPA filter is better than that of pure 2-order PA filter
 (See Table 2
)
. When noise rate is high, 2-order PA filter needs more time than AOPA filter. In such a case, the AOPA and pure 2-order PA filters give almost the same PSNR results, while AOPA filter is better in saving time.

To demonstrate the visual quality of the filtering results, we show an enlarged area of “Lena” in Fig. 5 where the image is corrupted by 20% fixed-valued impulse noise. It can be observed that the 1-order PA filter can give only rough approximation on the corrupted pixels while the AOPA filter tells much more details.

In Table 3, we compare our PA filter with other state-of-the-art algorithms. Abreu et. al. reported many restoration results in PSNR for images corrupted by both 20% fixed-valued and random-valued impulse noises.10 Some filtering results of a fuzzy approach developed by us are also provided
.
11
 We list some of those data and add the PSNR performance of our FOPA and AOPA filters into the table. It can be observed that for the case of fixed-valued impulse noise, the 2-order PA, 3-order PA and AOPA filters provide significant improvement over all the other approaches, while for the case of random-valued impulse noise, the 2-order PA, 3-order and AOPA filters are also the best and only the fuzzy approach11 can compete with them. In Fig. 6 and Fig. 7, we show some restored images obtained by different filtering methods which are the typical 3(3, 5(5 median filter, the switch I median filter 3 and our AOPA filter. In Fig. 6, the test image “Bridge” is corrupted by 30% random-valued impulse noise, while in Fig. 7, the test image “Peppers” is corrupted by 30% fixed-valued impulse noise. With a small window size of 3(3, the typical median filter misses many impulse pixels remaining in the image. When larger window size such as 5(5 is applied, almost all the impulses are removed, but many good pixels are also modified, resulting in blurring of the image. The Switch I median filter can well preserve good pixels while eliminating noise pixels, but still many impulses remained unaltered. Dramatic restoration results are obtained by the AOPA filter. It can remove almost all of the noise pixels while preserve image details very well.

6 Conclusion

In this paper, a new impulse noise removal approach is introduced which is developed by using impulse detection and polynomial approximation techniques. The proposed impulse replacement method break
s
through
 the traditional framework in that it is not de
sign
ed by employing merely the ranking or statistic information and replacing the corrupted value with one from local window or some linear combination of local samples, but is implemented by modeling the local region using a polynomial, which is more powerful in representing the real structure of the region. An adaptive method
is also presented

which
 can automatically give an appropriate polynomial order for a local region
. It
ha
s
been
proved to be very successful in obtaining good restoration results while saving computation time. Simulation results show that the proposed approach significantly outperforms many well-known techniques.

�References

S. T. Bow, Pattern Recognition and Image Processing, Marcel Dekker, Inc., New York, (1992).

H. Lin, A. N. Willson, “Median filter with adaptive length,” IEEE Trans. Circuits and Systems, 35(6), 675-690, (1988).

T. Sun and Y. Neuvo, “Detail-preserving median based filters in image processing,” Pattern Recognition Letters, 15, 341-347, (1994).

R. C. Hardie and C. G. Boncelet, “LUM filters: A class of rank-order-based filters for smoothing and sharpening,” IEEE Trans. Signal Processing, 41(3), 1061-1076, (1993).

R. C. Hardie and K. E. Barner, “Rank conditioned rank selection filters for signal restoration,” IEEE Trans. Image Processing, 3(2), 192-206, (1994).

T. Sun M. Gabbouj and Y. Neuvo, “Center weighted median filters: Some properties and their applications in image processing,” Signal Processing, 35, 213-229, (1994).

G. Ramponi, “The rational filter for image smoothing,” IEEE Signal Processing Letters, 3(3), 63-65, (1996).

F. Russo and G. Ramponi, “A fuzzy filter for images corrupted by impulse noise,” IEEE Signal Processing Letters, 3(6), 168-170, (1996).

L. García-Cabrera, M. J. García-Salinas, P. L. Luque-Escamilla, J. Martínez-Aroza, J. F. Gómez-Lopera and R. Román-Roldán, “Median-type filters with model-based preselection masks,” Image and Vision computing, 14, 741-752, (1996).

E. Abreu, M. Lightstone, S. K. Mitra and K. Arakawa, “A new efficient approach for the removal of impulse noise from highly corrupted images,” IEEE Trans. Image Processing, 5(6), 1012-1025, (1996).

D. Zhang and Z. Wang, “Impulse noise detection and removal using fuzzy techniques,” Electronics Letters, 33, 378-379, (1997).

Z. Wang and D. Zhang, “Restoration of impulse noise corrupted images using long-range correlation,” submitted to IEEE Signal Processing Letters, (1997).

�Tables

Filtering results in PSNR for “Lena” corrupted with fixed-valued impulse noise.

Filtering results in PSNR for “Lena” corrupted with random-valued impulse noise.

Comparative restoration results in PSNR for 20% impulse noise for image “Lena”. For fixed-valued impulse noise, impulses take on only the values 0 or 255 with equal probability. For random-valued impulse noise, impulse values are uniformly distributed between 0 and 255. See reference 10 and 11 for parameter selection schemes.

Figures

An example of the influence of detection parameters on the detection correct rate for fixed-valued impulse noise. The test image is “Lena” corrupted by 20% noise. (a) Correct rate as a function of Nd, where Td is a fixed value of 35; (b) Correct rate as a function of Td, where Nd is a fixed value of 3.

An example of the influence of detection parameters on the detection correct rate for random-valued impulse noise. The test image is “Lena” corrupted by 20% noise. (a) Correct rate as a function of Nd, where Td is a fixed value of 20; (b) Correct rate as a function of Td, where Nd is a fixed value of 1.

An example that demonstrates the approximation and estimation functions of 2-order and 3-order polynomials.

Comparison of computing time for various PA filters. The test image “Lena” is corrupted by fixed-valued impulse noise with a noise rate ranging from 10% to 30%. The simulations are conducted on a Pentium 166M PC computer.

(a) An enlarged area of “Lena” corrupted by 20% fixed-valued impulse noise; (b) Restoration result by 1-order PA filter; (c) Restoration result by AOPA filter; (d) The original image area.

Comparative restoration results for “Bridge” corrupted by 30% random-valued impulse noise. (a) The corrupted image; (b) Restored by 3(3 median filter; (c) Restored by 5(5 median filter; (d) Restored by Switch I scheme; (e) Restored by AOPA filter; (f) The original image of “Bridge”.

Comparative restoration results for “Peppers” corrupted by 30% fixed-valued impulse noise. (a) The corrupted image; (b) Restored by 3(3 median filter; (c) Restored by 5(5 median filter; (d) Restored by Switch I scheme; (e) Restored by AOPA filter; (f) The original image of “Peppers”.

�

Table 1.

�Filtering�Percentage of Fixed-valued Impulse Noise��Algorithm�10%�15%�20%�25%�30%��0-order PA filter�36.60 dB�35.64 dB�34.65 dB�33.66 dB�32.31 dB��1-order PA filter�36.64 dB�35.65 dB�34.71 dB�33.69 dB�32.36 dB��2-order PA filter�39.48 dB�38.61 dB�37.44 dB�36.26 dB�34.22 dB��3-order PA filter�39.63 dB�38.79 dB�37.56 dB�35.74 dB�33.03 dB��AOPA filter�39.60 dB�38.79 dB�37.57 dB�36.27 dB�34.21 dB���(0.03 dB� 0.00 dB�+0.01 dB�+0.01 dB�(0.01 dB��

Table 2.

Filtering�Percentage of Random-valued Impulse Noise��Algorithm�10%�15%�20%�25%�30%��0-order PA filter�34.41 dB�33.34 dB�32.39 dB�31.41 dB�30.25 dB��1-order PA filter�34.44 dB�33.38 dB�32.38 dB�31.41 dB�30.23 dB��2-order PA filter�36.68 dB�35.30 dB�33.99 dB�32.59 dB�30.87 dB��3-order PA filter�36.80 dB�35.32 dB�33.75 dB�32.12 dB�29.67 dB��AOPA filter�36.79 dB�35.36 dB�34.00 dB�32.57 dB�30.86 dB���(0.01 dB�+0.04 dB�+0.01 dB�(0.02 dB�(0.01 dB��

Table 3.

Filtering Algorithm�Fixed-valued Impulses�Random-valued Impulses��Median filter (3(3)�28.57 dB�29.76 dB��Median filter (5(5)�28.78 dB�28.59 dB��Median filter with adaptive length2�30.57 dB�31.18 dB��Rank conditioned rank selection filter5�31.36 dB�30.78 dB��Switch I median filter3�31.97 dB�31.34 dB��Switch II median filter3�29.96 dB�32.04 dB��Abreu et al. (M=1296) (inside training set)10�35.70 dB�33.37 dB��Fuzzy approach11�36.47 dB�33.78 dB��0-order PA filter�34.65 dB�32.39 dB��1-order PA filter�34.71 dB�32.38 dB��2-order PA filter�37.44 dB�33.99 dB��3-order PA filter�37.56 dB�33.75 dB��AOPA filter�37.57 dB�34.00 dB��

�PAGE �

�PAGE �
15
�

