home research publications people open positions contact | ||||||
Dana Kulić Assistant Professor, University of Waterloo Dana Kulić received the combined B.A.Sc. and M.Eng. degrees in electromechanical engineering and the Ph.D. degree in mechanical engineering from the University of British Columbia, Vancouver, Canada, in 1998 and 2005, respectively. From 1997 to 2002, she worked as a systems engineer designing fuel cell systems with Ballard Power Systems, and developing operational control software for the CanadaArm II at MacDonald Dettwiler. From 2002 to 2006, Dr. Kulić worked with Dr. Elizabeth Croft as a Ph. D. student and a post–doctoral researcher at the CARIS Lab at the University of British Columbia. The aim of this work was to develop a human–robot interaction strategy to ensure the safety of the human participant. The approach was based on quantifying the level of danger present in the interaction, and then acting to minimize that danger, both during path planning and real–time control. A second component of the work examined the feasibility of using human monitoring information (such as gaze direction, head rotation and physiological monitoring) to improve the safety of the human robot interaction. From 2006 to 2009, Dr. Kulić was a JSPS Post–doctoral Fellow and a Project Assistant Professor at the Nakamura-Yamane Laboratory at the University of Tokyo, Japan. The aim of her research was to develop algorithms for incremental learning of human motion patterns for humanoid robots. This work focused on incremental algorithms for automatically segmenting, clustering and organizing motion pattern primitives observed from human demonstration. The autonomously extracted knowledge about human movement could then be used both for human behavior analysis and prediction, as well as for motion generation for humanoid robots. Dr. Kulić is currently an Assistant Professor at the Electrical and Computer Engineering Department at the University of Waterloo. Her research interests include robot learning, humanoid robots, human–robot interaction and mechatronics. |
||||||