The following are essentially all 2 × 2 matrices that have both integer entries and integer eigenvalues that are also non-symmetric and invertible. No lower-triangular nor upper-triangular matrices are listed, as the eigenvalues of these are obvious. All other cases are listed up to multiplication by -1, so the complementary matrix may be found by multiplying a listed matrix by -1, in which case, the corresponding complementary eigenvalues are the corresponding eigenvalues negated. They are grouped based on the maximum integer in absolute value in the matrix. The eigenvalues are sorted, so if you want an invertible matrix that has three repeated eigenvalues, you can search for, for example, "1, 1, 1".
Parentheses are used to identify eigenvalues that do not have corresponding eigenvectors; that is, it identifies matrices that are defective. Of course, all 2 × 2 matrices that are not symmetric with two equal eigenvalues must be defective.
Also availble are 2 × 2 matrices that are symmetric or invertible or both. While the matrices are in the Matlab format, some of these have been tested in Maple to ensure that they are not the result of numeric error.
Please note, these do not contain upper- or lower-triangular matrices.
There are no invertible 2 × 2 non-symetric matrices that have entries being only 0, 1 or -1 and have real integer eigenvalues that are also not either lower- or upper-triangular.
These are all such matrices up to multiplication by -1, in which case, the eigenvalues are also negated.
Eigenvalues | Matrix |
---|---|
-1, (-1) | [0 1; -1 -2] |
1, (1) | [0 1; -1 2] |
-2, 1 | [0 1; 2 -1] |
-1, 2 | [0 1; 2 1] |
-2, 1 | [0 2; 1 -1] |
-1, 2 | [0 2; 1 1] |
-1, 2 | [1 -2; -1 0] |
-1, 2 | [1 -1; -2 0] |
-1, 2 | [1 1; 2 0] |
-1, 2 | [1 2; 1 0] |
1, (1) | [2 -1; 1 0] |
1, (1) | [2 1; -1 0] |
These are all such matrices up to multiplication by -1, in which case, the eigenvalues are also negated.
Eigenvalues | Matrix |
---|---|
-2, -1 | [0 1; -2 -3] |
1, 2 | [0 1; -2 3] |
-3, 1 | [0 1; 3 -2] |
-1, 3 | [0 1; 3 2] |
-2, -1 | [0 2; -1 -3] |
1, 2 | [0 2; -1 3] |
-3, 2 | [0 2; 3 -1] |
-2, 3 | [0 2; 3 1] |
-3, 1 | [0 3; 1 -2] |
-1, 3 | [0 3; 1 2] |
-3, 2 | [0 3; 2 -1] |
-2, 3 | [0 3; 2 1] |
-2, 3 | [1 -3; -2 0] |
-1, 4 | [1 -3; -2 2] |
-2, 2 | [1 -3; -1 -1] |
-2, 3 | [1 -2; -3 0] |
-1, 4 | [1 -2; -3 2] |
-1, (-1) | [1 -2; 2 -3] |
-2, 2 | [1 -1; -3 -1] |
2, (2) | [1 -1; 1 3] |
2, (2) | [1 1; -1 3] |
-2, 2 | [1 1; 3 -1] |
-1, (-1) | [1 2; -2 -3] |
-2, 3 | [1 2; 3 0] |
-1, 4 | [1 2; 3 2] |
-2, 2 | [1 3; 1 -1] |
-2, 3 | [1 3; 2 0] |
-1, 4 | [1 3; 2 2] |
-4, 3 | [2 -3; -2 -3] |
-1, 4 | [2 -3; -2 1] |
-1, 3 | [2 -3; -1 0] |
-1, 1 | [2 -3; 1 -2] |
-4, 3 | [2 -2; -3 -3] |
-1, 4 | [2 -2; -3 1] |
1, 4 | [2 -2; -1 3] |
-2, 1 | [2 -2; 2 -3] |
-1, 3 | [2 -1; -3 0] |
1, 4 | [2 -1; -2 3] |
-1, 1 | [2 -1; 3 -2] |
-1, 1 | [2 1; -3 -2] |
1, 4 | [2 1; 2 3] |
-1, 3 | [2 1; 3 0] |
-2, 1 | [2 2; -2 -3] |
1, 4 | [2 2; 1 3] |
-4, 3 | [2 2; 3 -3] |
-1, 4 | [2 2; 3 1] |
-1, 1 | [2 3; -1 -2] |
-1, 3 | [2 3; 1 0] |
-4, 3 | [2 3; 2 -3] |
-1, 4 | [2 3; 2 1] |
-3, 4 | [3 -3; -2 -2] |
-3, 4 | [3 -2; -3 -2] |
1, 4 | [3 -2; -1 2] |
1, 2 | [3 -2; 1 0] |
-1, 2 | [3 -2; 2 -2] |
1, (1) | [3 -2; 2 -1] |
1, 4 | [3 -1; -2 2] |
2, (2) | [3 -1; 1 1] |
1, 2 | [3 -1; 2 0] |
1, 2 | [3 1; -2 0] |
2, (2) | [3 1; -1 1] |
1, 4 | [3 1; 2 2] |
-1, 2 | [3 2; -2 -2] |
1, (1) | [3 2; -2 -1] |
1, 2 | [3 2; -1 0] |
1, 4 | [3 2; 1 2] |
-3, 4 | [3 2; 3 -2] |
-3, 4 | [3 3; 2 -2] |
These are all such matrices up to multiplication by -1, in which case, the eigenvalues are also negated. This list also excludes integer multiples of matrices already listed above.
Eigenvalues | Matrix |
---|---|
-2, (-2) | [ 0 1; -4 -4] |
2, (2) | [ 0 1; -4 4] |
-3, -1 | [ 0 1; -3 -4] |
1, 3 | [ 0 1; -3 4] |
-4, 1 | [ 0 1; 4 -3] |
-2, 2 | [ 0 1; 4 0] |
-1, 4 | [ 0 1; 4 3] |
2, (2) | [ 0 2; -2 4] |
-2, 4 | [ 0 2; 4 2] |
-3, -1 | [ 0 3; -1 -4] |
1, 3 | [ 0 3; -1 4] |
-6, 2 | [ 0 3; 4 -4] |
-4, 3 | [ 0 3; 4 -1] |
-3, 4 | [ 0 3; 4 1] |
-2, 6 | [ 0 3; 4 4] |
-2, (-2) | [ 0 4; -1 -4] |
2, (2) | [ 0 4; -1 4] |
-4, 1 | [ 0 4; 1 -3] |
-2, 2 | [ 0 4; 1 0] |
-1, 4 | [ 0 4; 1 3] |
-2, 4 | [ 0 4; 2 2] |
-6, 2 | [ 0 4; 3 -4] |
-4, 3 | [ 0 4; 3 -1] |
-3, 4 | [ 0 4; 3 1] |
-2, 6 | [ 0 4; 3 4] |
-5, 3 | [ 1 -4; -3 -3] |
-3, 4 | [ 1 -4; -3 0] |
-2, 5 | [ 1 -4; -3 2] |
-3, 3 | [ 1 -4; -2 -1] |
-1, 5 | [ 1 -4; -2 3] |
-3, 2 | [ 1 -4; -1 -2] |
-1, 3 | [ 1 -4; -1 1] |
-1, (-1) | [ 1 -4; 1 -3] |
-5, 3 | [ 1 -3; -4 -3] |
-3, 4 | [ 1 -3; -4 0] |
-2, 5 | [ 1 -3; -4 2] |
-5, 2 | [ 1 -3; -2 -4] |
-2, -1 | [ 1 -3; 2 -4] |
-3, 3 | [ 1 -2; -4 -1] |
-1, 5 | [ 1 -2; -4 3] |
-5, 2 | [ 1 -2; -3 -4] |
2, 3 | [ 1 -2; 1 4] |
-2, -1 | [ 1 -2; 3 -4] |
-3, 2 | [ 1 -1; -4 -2] |
-1, 3 | [ 1 -1; -4 1] |
2, 3 | [ 1 -1; 2 4] |
-1, (-1) | [ 1 -1; 4 -3] |
-1, (-1) | [ 1 1; -4 -3] |
2, 3 | [ 1 1; -2 4] |
-3, 2 | [ 1 1; 4 -2] |
-1, 3 | [ 1 1; 4 1] |
-2, -1 | [ 1 2; -3 -4] |
2, 3 | [ 1 2; -1 4] |
-5, 2 | [ 1 2; 3 -4] |
-3, 3 | [ 1 2; 4 -1] |
-1, 5 | [ 1 2; 4 3] |
-2, -1 | [ 1 3; -2 -4] |
-5, 2 | [ 1 3; 2 -4] |
-5, 3 | [ 1 3; 4 -3] |
-3, 4 | [ 1 3; 4 0] |
-2, 5 | [ 1 3; 4 2] |
-1, (-1) | [ 1 4; -1 -3] |
-3, 2 | [ 1 4; 1 -2] |
-1, 3 | [ 1 4; 1 1] |
-3, 3 | [ 1 4; 2 -1] |
-1, 5 | [ 1 4; 2 3] |
-5, 3 | [ 1 4; 3 -3] |
-3, 4 | [ 1 4; 3 0] |
-2, 5 | [ 1 4; 3 2] |
-4, 4 | [ 2 -4; -3 -2] |
-2, 5 | [ 2 -4; -3 1] |
-1, 6 | [ 2 -4; -3 3] |
-2, 3 | [ 2 -4; -1 -1] |
-2, 1 | [ 2 -4; 1 -3] |
-4, 4 | [ 2 -3; -4 -2] |
-2, 5 | [ 2 -3; -4 1] |
-1, 6 | [ 2 -3; -4 3] |
1, 5 | [ 2 -3; -1 4] |
-1, (-1) | [ 2 -3; 3 -4] |
-2, 3 | [ 2 -1; -4 -1] |
1, 5 | [ 2 -1; -3 4] |
3, (3) | [ 2 -1; 1 4] |
-2, 1 | [ 2 -1; 4 -3] |
-2, 1 | [ 2 1; -4 -3] |
3, (3) | [ 2 1; -1 4] |
1, 5 | [ 2 1; 3 4] |
-2, 3 | [ 2 1; 4 -1] |
-1, (-1) | [ 2 3; -3 -4] |
1, 5 | [ 2 3; 1 4] |
-4, 4 | [ 2 3; 4 -2] |
-2, 5 | [ 2 3; 4 1] |
-1, 6 | [ 2 3; 4 3] |
-2, 1 | [ 2 4; -1 -3] |
-2, 3 | [ 2 4; 1 -1] |
-4, 4 | [ 2 4; 3 -2] |
-2, 5 | [ 2 4; 3 1] |
-1, 6 | [ 2 4; 3 3] |
-3, 5 | [ 3 -4; -3 -1] |
-1, 6 | [ 3 -4; -3 2] |
-5, 4 | [ 3 -4; -2 -4] |
-1, 5 | [ 3 -4; -2 1] |
-1, 4 | [ 3 -4; -1 0] |
1, 5 | [ 3 -4; -1 3] |
-1, 2 | [ 3 -4; 1 -2] |
1, (1) | [ 3 -4; 1 -1] |
-1, 1 | [ 3 -4; 2 -3] |
-3, 5 | [ 3 -3; -4 -1] |
-1, 6 | [ 3 -3; -4 2] |
1, 6 | [ 3 -3; -2 4] |
-3, 2 | [ 3 -3; 2 -4] |
-5, 4 | [ 3 -2; -4 -4] |
-1, 5 | [ 3 -2; -4 1] |
1, 6 | [ 3 -2; -3 4] |
2, 5 | [ 3 -2; -1 4] |
-3, 2 | [ 3 -2; 3 -4] |
-1, 1 | [ 3 -2; 4 -3] |
-1, 4 | [ 3 -1; -4 0] |
1, 5 | [ 3 -1; -4 3] |
2, 5 | [ 3 -1; -2 4] |
-1, 2 | [ 3 -1; 4 -2] |
1, (1) | [ 3 -1; 4 -1] |
-1, 2 | [ 3 1; -4 -2] |
1, (1) | [ 3 1; -4 -1] |
2, 5 | [ 3 1; 2 4] |
-1, 4 | [ 3 1; 4 0] |
1, 5 | [ 3 1; 4 3] |
-1, 1 | [ 3 2; -4 -3] |
-3, 2 | [ 3 2; -3 -4] |
2, 5 | [ 3 2; 1 4] |
1, 6 | [ 3 2; 3 4] |
-5, 4 | [ 3 2; 4 -4] |
-1, 5 | [ 3 2; 4 1] |
-3, 2 | [ 3 3; -2 -4] |
1, 6 | [ 3 3; 2 4] |
-3, 5 | [ 3 3; 4 -1] |
-1, 6 | [ 3 3; 4 2] |
-1, 1 | [ 3 4; -2 -3] |
-1, 2 | [ 3 4; -1 -2] |
1, (1) | [ 3 4; -1 -1] |
-1, 4 | [ 3 4; 1 0] |
1, 5 | [ 3 4; 1 3] |
-5, 4 | [ 3 4; 2 -4] |
-1, 5 | [ 3 4; 2 1] |
-3, 5 | [ 3 4; 3 -1] |
-1, 6 | [ 3 4; 3 2] |
-2, 6 | [ 4 -4; -3 0] |
-4, 5 | [ 4 -4; -2 -3] |
2, 6 | [ 4 -4; -1 4] |
2, (2) | [ 4 -4; 1 0] |
-2, 2 | [ 4 -4; 3 -4] |
-2, 6 | [ 4 -3; -4 0] |
-2, 5 | [ 4 -3; -2 -1] |
1, 6 | [ 4 -3; -2 3] |
1, 5 | [ 4 -3; -1 2] |
1, 3 | [ 4 -3; 1 0] |
-2, 3 | [ 4 -3; 2 -3] |
1, 2 | [ 4 -3; 2 -1] |
1, (1) | [ 4 -3; 3 -2] |
-2, 2 | [ 4 -3; 4 -4] |
-4, 5 | [ 4 -2; -4 -3] |
-2, 5 | [ 4 -2; -3 -1] |
1, 6 | [ 4 -2; -3 3] |
2, 5 | [ 4 -2; -1 3] |
2, 3 | [ 4 -2; 1 1] |
-2, 3 | [ 4 -2; 3 -3] |
1, 2 | [ 4 -2; 3 -1] |
2, 6 | [ 4 -1; -4 4] |
1, 5 | [ 4 -1; -3 2] |
2, 5 | [ 4 -1; -2 3] |
3, (3) | [ 4 -1; 1 2] |
2, 3 | [ 4 -1; 2 1] |
1, 3 | [ 4 -1; 3 0] |
2, (2) | [ 4 -1; 4 0] |
2, (2) | [ 4 1; -4 0] |
1, 3 | [ 4 1; -3 0] |
2, 3 | [ 4 1; -2 1] |
3, (3) | [ 4 1; -1 2] |
2, 5 | [ 4 1; 2 3] |
1, 5 | [ 4 1; 3 2] |
2, 6 | [ 4 1; 4 4] |
-2, 3 | [ 4 2; -3 -3] |
1, 2 | [ 4 2; -3 -1] |
2, 3 | [ 4 2; -1 1] |
2, 5 | [ 4 2; 1 3] |
-2, 5 | [ 4 2; 3 -1] |
1, 6 | [ 4 2; 3 3] |
-4, 5 | [ 4 2; 4 -3] |
-2, 2 | [ 4 3; -4 -4] |
1, (1) | [ 4 3; -3 -2] |
-2, 3 | [ 4 3; -2 -3] |
1, 2 | [ 4 3; -2 -1] |
1, 3 | [ 4 3; -1 0] |
1, 5 | [ 4 3; 1 2] |
-2, 5 | [ 4 3; 2 -1] |
1, 6 | [ 4 3; 2 3] |
-2, 6 | [ 4 3; 4 0] |
-2, 2 | [ 4 4; -3 -4] |
2, (2) | [ 4 4; -1 0] |
2, 6 | [ 4 4; 1 4] |
-4, 5 | [ 4 4; 2 -3] |
-2, 6 | [ 4 4; 3 0] |
These are all such matrices up to multiplication by -1, in which case, the eigenvalues are also negated.
Eigenvalues | Matrix |
---|---|
-4, -1 | [ 0 1; -4 -5] |
1, 4 | [ 0 1; -4 5] |
-5, 1 | [ 0 1; 5 -4] |
-1, 5 | [ 0 1; 5 4] |
-3, -2 | [ 0 2; -3 -5] |
2, 3 | [ 0 2; -3 5] |
-4, -1 | [ 0 2; -2 -5] |
1, 4 | [ 0 2; -2 5] |
-6, 1 | [ 0 2; 3 -5] |
-1, 6 | [ 0 2; 3 5] |
-5, 2 | [ 0 2; 5 -3] |
-2, 5 | [ 0 2; 5 3] |
-3, -2 | [ 0 3; -2 -5] |
2, 3 | [ 0 3; -2 5] |
-6, 1 | [ 0 3; 2 -5] |
-1, 6 | [ 0 3; 2 5] |
-5, 3 | [ 0 3; 5 -2] |
-3, 5 | [ 0 3; 5 2] |
-4, -1 | [ 0 4; -1 -5] |
1, 4 | [ 0 4; -1 5] |
-5, 4 | [ 0 4; 5 -1] |
-4, 5 | [ 0 4; 5 1] |
-5, 1 | [ 0 5; 1 -4] |
-1, 5 | [ 0 5; 1 4] |
-5, 2 | [ 0 5; 2 -3] |
-2, 5 | [ 0 5; 2 3] |
-5, 3 | [ 0 5; 3 -2] |
-3, 5 | [ 0 5; 3 2] |
-5, 4 | [ 0 5; 4 -1] |
-4, 5 | [ 0 5; 4 1] |
-4, 5 | [ 1 -5; -4 0] |
-3, 6 | [ 1 -5; -4 2] |
-4, 4 | [ 1 -5; -3 -1] |
-2, 6 | [ 1 -5; -3 3] |
-4, 3 | [ 1 -5; -2 -2] |
-1, 6 | [ 1 -5; -2 4] |
-4, 2 | [ 1 -5; -1 -3] |
-4, 5 | [ 1 -4; -5 0] |
-3, 6 | [ 1 -4; -5 2] |
-1, 7 | [ 1 -4; -3 5] |
3, (3) | [ 1 -4; 1 5] |
-3, -1 | [ 1 -4; 2 -5] |
-4, 4 | [ 1 -3; -5 -1] |
-2, 6 | [ 1 -3; -5 3] |
-1, 7 | [ 1 -3; -4 5] |
2, 4 | [ 1 -3; 1 5] |
-2, (-2) | [ 1 -3; 3 -5] |
-4, 3 | [ 1 -2; -5 -2] |
-1, 6 | [ 1 -2; -5 4] |
3, (3) | [ 1 -2; 2 5] |
-3, -1 | [ 1 -2; 4 -5] |
-4, 2 | [ 1 -1; -5 -3] |
2, 4 | [ 1 -1; 3 5] |
3, (3) | [ 1 -1; 4 5] |
3, (3) | [ 1 1; -4 5] |
2, 4 | [ 1 1; -3 5] |
-4, 2 | [ 1 1; 5 -3] |
-3, -1 | [ 1 2; -4 -5] |
3, (3) | [ 1 2; -2 5] |
-4, 3 | [ 1 2; 5 -2] |
-1, 6 | [ 1 2; 5 4] |
-2, (-2) | [ 1 3; -3 -5] |
2, 4 | [ 1 3; -1 5] |
-1, 7 | [ 1 3; 4 5] |
-4, 4 | [ 1 3; 5 -1] |
-2, 6 | [ 1 3; 5 3] |
-3, -1 | [ 1 4; -2 -5] |
3, (3) | [ 1 4; -1 5] |
-1, 7 | [ 1 4; 3 5] |
-4, 5 | [ 1 4; 5 0] |
-3, 6 | [ 1 4; 5 2] |
-4, 2 | [ 1 5; 1 -3] |
-4, 3 | [ 1 5; 2 -2] |
-1, 6 | [ 1 5; 2 4] |
-4, 4 | [ 1 5; 3 -1] |
-2, 6 | [ 1 5; 3 3] |
-4, 5 | [ 1 5; 4 0] |
-3, 6 | [ 1 5; 4 2] |
-3, 6 | [ 2 -5; -4 1] |
-2, 7 | [ 2 -5; -4 3] |
-3, 5 | [ 2 -5; -3 0] |
-1, 7 | [ 2 -5; -3 4] |
-3, 4 | [ 2 -5; -2 -1] |
-3, 3 | [ 2 -5; -1 -2] |
-3, 1 | [ 2 -5; 1 -4] |
-3, 6 | [ 2 -4; -5 1] |
-2, 7 | [ 2 -4; -5 3] |
-6, 3 | [ 2 -4; -2 -5] |
1, 6 | [ 2 -4; -1 5] |
-2, -1 | [ 2 -4; 3 -5] |
-3, 5 | [ 2 -3; -5 0] |
-1, 7 | [ 2 -3; -5 4] |
-4, 1 | [ 2 -3; 2 -5] |
-2, -1 | [ 2 -3; 4 -5] |
-3, 4 | [ 2 -2; -5 -1] |
-6, 3 | [ 2 -2; -4 -5] |
3, 4 | [ 2 -2; 1 5] |
-4, 1 | [ 2 -2; 3 -5] |
-3, 3 | [ 2 -1; -5 -2] |
1, 6 | [ 2 -1; -4 5] |
3, 4 | [ 2 -1; 2 5] |
-3, 1 | [ 2 -1; 5 -4] |
-3, 1 | [ 2 1; -5 -4] |
3, 4 | [ 2 1; -2 5] |
1, 6 | [ 2 1; 4 5] |
-3, 3 | [ 2 1; 5 -2] |
-4, 1 | [ 2 2; -3 -5] |
3, 4 | [ 2 2; -1 5] |
-6, 3 | [ 2 2; 4 -5] |
-3, 4 | [ 2 2; 5 -1] |
-2, -1 | [ 2 3; -4 -5] |
-4, 1 | [ 2 3; -2 -5] |
-3, 5 | [ 2 3; 5 0] |
-1, 7 | [ 2 3; 5 4] |
-2, -1 | [ 2 4; -3 -5] |
1, 6 | [ 2 4; 1 5] |
-6, 3 | [ 2 4; 2 -5] |
-3, 6 | [ 2 4; 5 1] |
-2, 7 | [ 2 4; 5 3] |
-3, 1 | [ 2 5; -1 -4] |
-3, 3 | [ 2 5; 1 -2] |
-3, 4 | [ 2 5; 2 -1] |
-3, 5 | [ 2 5; 3 0] |
-1, 7 | [ 2 5; 3 4] |
-3, 6 | [ 2 5; 4 1] |
-2, 7 | [ 2 5; 4 3] |
-7, 5 | [ 3 -5; -4 -5] |
-2, 7 | [ 3 -5; -4 2] |
-1, 8 | [ 3 -5; -4 4] |
-2, 6 | [ 3 -5; -3 1] |
-2, 5 | [ 3 -5; -2 0] |
-2, 4 | [ 3 -5; -1 -1] |
-2, 2 | [ 3 -5; 1 -3] |
-2, 1 | [ 3 -5; 2 -4] |
-7, 5 | [ 3 -4; -5 -5] |
-2, 7 | [ 3 -4; -5 2] |
-1, 8 | [ 3 -4; -5 4] |
1, 7 | [ 3 -4; -2 5] |
-3, 1 | [ 3 -4; 3 -5] |
-1, (-1) | [ 3 -4; 4 -5] |
-2, 6 | [ 3 -3; -5 1] |
2, 6 | [ 3 -3; -1 5] |
-3, 1 | [ 3 -3; 4 -5] |
-2, 5 | [ 3 -2; -5 0] |
1, 7 | [ 3 -2; -4 5] |
-2, 1 | [ 3 -2; 5 -4] |
-2, 4 | [ 3 -1; -5 -1] |
2, 6 | [ 3 -1; -3 5] |
4, (4) | [ 3 -1; 1 5] |
-2, 2 | [ 3 -1; 5 -3] |
-2, 2 | [ 3 1; -5 -3] |
4, (4) | [ 3 1; -1 5] |
2, 6 | [ 3 1; 3 5] |
-2, 4 | [ 3 1; 5 -1] |
-2, 1 | [ 3 2; -5 -4] |
1, 7 | [ 3 2; 4 5] |
-2, 5 | [ 3 2; 5 0] |
-3, 1 | [ 3 3; -4 -5] |
2, 6 | [ 3 3; 1 5] |
-2, 6 | [ 3 3; 5 1] |
-1, (-1) | [ 3 4; -4 -5] |
-3, 1 | [ 3 4; -3 -5] |
1, 7 | [ 3 4; 2 5] |
-7, 5 | [ 3 4; 5 -5] |
-2, 7 | [ 3 4; 5 2] |
-1, 8 | [ 3 4; 5 4] |
-2, 1 | [ 3 5; -2 -4] |
-2, 2 | [ 3 5; -1 -3] |
-2, 4 | [ 3 5; 1 -1] |
-2, 5 | [ 3 5; 2 0] |
-2, 6 | [ 3 5; 3 1] |
-7, 5 | [ 3 5; 4 -5] |
-2, 7 | [ 3 5; 4 2] |
-1, 8 | [ 3 5; 4 4] |
-6, 6 | [ 4 -5; -4 -4] |
-1, 8 | [ 4 -5; -4 3] |
-1, 7 | [ 4 -5; -3 2] |
-6, 5 | [ 4 -5; -2 -5] |
-1, 6 | [ 4 -5; -2 1] |
-1, 5 | [ 4 -5; -1 0] |
-1, 3 | [ 4 -5; 1 -2] |
-1, 2 | [ 4 -5; 2 -3] |
-1, 1 | [ 4 -5; 3 -4] |
-6, 6 | [ 4 -4; -5 -4] |
-1, 8 | [ 4 -4; -5 3] |
1, 8 | [ 4 -4; -3 5] |
-4, 3 | [ 4 -4; 2 -5] |
-1, 7 | [ 4 -3; -5 2] |
1, 8 | [ 4 -3; -4 5] |
2, 7 | [ 4 -3; -2 5] |
-1, 1 | [ 4 -3; 5 -4] |
-6, 5 | [ 4 -2; -5 -5] |
-1, 6 | [ 4 -2; -5 1] |
2, 7 | [ 4 -2; -3 5] |
3, 6 | [ 4 -2; -1 5] |
-4, 3 | [ 4 -2; 4 -5] |
-1, 2 | [ 4 -2; 5 -3] |
-1, 5 | [ 4 -1; -5 0] |
3, 6 | [ 4 -1; -2 5] |
-1, 3 | [ 4 -1; 5 -2] |
-1, 3 | [ 4 1; -5 -2] |
3, 6 | [ 4 1; 2 5] |
-1, 5 | [ 4 1; 5 0] |
-1, 2 | [ 4 2; -5 -3] |
-4, 3 | [ 4 2; -4 -5] |
3, 6 | [ 4 2; 1 5] |
2, 7 | [ 4 2; 3 5] |
-6, 5 | [ 4 2; 5 -5] |
-1, 6 | [ 4 2; 5 1] |
-1, 1 | [ 4 3; -5 -4] |
2, 7 | [ 4 3; 2 5] |
1, 8 | [ 4 3; 4 5] |
-1, 7 | [ 4 3; 5 2] |
-4, 3 | [ 4 4; -2 -5] |
1, 8 | [ 4 4; 3 5] |
-6, 6 | [ 4 4; 5 -4] |
-1, 8 | [ 4 4; 5 3] |
-1, 1 | [ 4 5; -3 -4] |
-1, 2 | [ 4 5; -2 -3] |
-1, 3 | [ 4 5; -1 -2] |
-1, 5 | [ 4 5; 1 0] |
-6, 5 | [ 4 5; 2 -5] |
-1, 6 | [ 4 5; 2 1] |
-1, 7 | [ 4 5; 3 2] |
-6, 6 | [ 4 5; 4 -4] |
-1, 8 | [ 4 5; 4 3] |
-5, 7 | [ 5 -5; -4 -3] |
-5, 6 | [ 5 -5; -2 -4] |
-5, 7 | [ 5 -4; -5 -3] |
-1, 7 | [ 5 -4; -3 1] |
1, 8 | [ 5 -4; -3 4] |
-3, 6 | [ 5 -4; -2 -2] |
1, 7 | [ 5 -4; -2 3] |
1, 6 | [ 5 -4; -1 2] |
3, 7 | [ 5 -4; -1 5] |
1, 4 | [ 5 -4; 1 0] |
3, (3) | [ 5 -4; 1 1] |
-3, 4 | [ 5 -4; 2 -4] |
1, 3 | [ 5 -4; 2 -1] |
-1, 3 | [ 5 -4; 3 -3] |
1, 2 | [ 5 -4; 3 -2] |
-3, 3 | [ 5 -4; 4 -5] |
1, (1) | [ 5 -4; 4 -3] |
-1, 7 | [ 5 -3; -4 1] |
1, 8 | [ 5 -3; -4 4] |
-1, 6 | [ 5 -3; -2 0] |
2, 7 | [ 5 -3; -2 4] |
2, 6 | [ 5 -3; -1 3] |
2, 4 | [ 5 -3; 1 1] |
-1, 4 | [ 5 -3; 2 -2] |
2, 3 | [ 5 -3; 2 0] |
-4, 4 | [ 5 -3; 3 -5] |
2, (2) | [ 5 -3; 3 -1] |
-1, 3 | [ 5 -3; 4 -3] |
1, 2 | [ 5 -3; 4 -2] |
-5, 6 | [ 5 -2; -5 -4] |
-3, 6 | [ 5 -2; -4 -2] |
1, 7 | [ 5 -2; -4 3] |
-1, 6 | [ 5 -2; -3 0] |
2, 7 | [ 5 -2; -3 4] |
3, 6 | [ 5 -2; -1 4] |
3, 4 | [ 5 -2; 1 2] |
1, 4 | [ 5 -2; 2 0] |
3, (3) | [ 5 -2; 2 1] |
-1, 4 | [ 5 -2; 3 -2] |
2, 3 | [ 5 -2; 3 0] |
-3, 4 | [ 5 -2; 4 -4] |
1, 3 | [ 5 -2; 4 -1] |
1, 6 | [ 5 -1; -4 2] |
3, 7 | [ 5 -1; -4 5] |
2, 6 | [ 5 -1; -3 3] |
3, 6 | [ 5 -1; -2 4] |
4, (4) | [ 5 -1; 1 3] |
3, 4 | [ 5 -1; 2 2] |
2, 4 | [ 5 -1; 3 1] |
1, 4 | [ 5 -1; 4 0] |
3, (3) | [ 5 -1; 4 1] |
1, 4 | [ 5 1; -4 0] |
3, (3) | [ 5 1; -4 1] |
2, 4 | [ 5 1; -3 1] |
3, 4 | [ 5 1; -2 2] |
4, (4) | [ 5 1; -1 3] |
3, 6 | [ 5 1; 2 4] |
2, 6 | [ 5 1; 3 3] |
1, 6 | [ 5 1; 4 2] |
3, 7 | [ 5 1; 4 5] |
-3, 4 | [ 5 2; -4 -4] |
1, 3 | [ 5 2; -4 -1] |
-1, 4 | [ 5 2; -3 -2] |
2, 3 | [ 5 2; -3 0] |
1, 4 | [ 5 2; -2 0] |
3, (3) | [ 5 2; -2 1] |
3, 4 | [ 5 2; -1 2] |
3, 6 | [ 5 2; 1 4] |
-1, 6 | [ 5 2; 3 0] |
2, 7 | [ 5 2; 3 4] |
-3, 6 | [ 5 2; 4 -2] |
1, 7 | [ 5 2; 4 3] |
-5, 6 | [ 5 2; 5 -4] |
-1, 3 | [ 5 3; -4 -3] |
1, 2 | [ 5 3; -4 -2] |
-4, 4 | [ 5 3; -3 -5] |
2, (2) | [ 5 3; -3 -1] |
-1, 4 | [ 5 3; -2 -2] |
2, 3 | [ 5 3; -2 0] |
2, 4 | [ 5 3; -1 1] |
2, 6 | [ 5 3; 1 3] |
-1, 6 | [ 5 3; 2 0] |
2, 7 | [ 5 3; 2 4] |
-1, 7 | [ 5 3; 4 1] |
1, 8 | [ 5 3; 4 4] |
-3, 3 | [ 5 4; -4 -5] |
1, (1) | [ 5 4; -4 -3] |
-1, 3 | [ 5 4; -3 -3] |
1, 2 | [ 5 4; -3 -2] |
-3, 4 | [ 5 4; -2 -4] |
1, 3 | [ 5 4; -2 -1] |
1, 4 | [ 5 4; -1 0] |
3, (3) | [ 5 4; -1 1] |
1, 6 | [ 5 4; 1 2] |
3, 7 | [ 5 4; 1 5] |
-3, 6 | [ 5 4; 2 -2] |
1, 7 | [ 5 4; 2 3] |
-1, 7 | [ 5 4; 3 1] |
1, 8 | [ 5 4; 3 4] |
-5, 7 | [ 5 4; 5 -3] |
-5, 6 | [ 5 5; 2 -4] |
-5, 7 | [ 5 5; 4 -3] |