The following are essentially all 3 × 3 invertible defective matrices that have both integer eigenvalues and integer singular values. They are grouped based on the maximum integer in absolute value in the matrix. The singular values are sorted, so if you want matrix that has two repeated singular values, you can search for, for example, "1, 1".
While the matrices are in the Matlab format, some of these have been tested in Maple to ensure that they are not the result of numeric error.
There are no invertible defective matrices that have these characteristics.
These are all such matrices up to multiplication by -1, in which case, the singular values are unchanged, or integer multiples of previous matrices.
Eigenvalues | Singular values | Matrix |
---|---|---|
2, -2, -2 | 4, 2, 1 | [2 -2 -1; 0 -2 -2; 0 0 -2] |
2, 2, -2 | 4, 2, 1 | [2 -2 -1; 0 2 2; 0 0 -2] |
2, 2, 2 | 4, 2, 1 | [2 -2 -1; 0 2 2; 0 0 2] |
2, 2, -2 | 4, 2, 1 | [2 -2 0; 0 -2 0; -2 1 2] |
2, 2, -2 | 4, 2, 1 | [2 -2 0; 0 -2 0; 2 -1 2] |
-2, 2, 2 | 4, 2, 1 | [2 -2 0; 0 2 0; -2 1 -2] |
2, 2, 2 | 4, 2, 1 | [2 -2 0; 0 2 0; -2 1 2] |
-2, 2, 2 | 4, 2, 1 | [2 -2 0; 0 2 0; 2 -1 -2] |
2, 2, 2 | 4, 2, 1 | [2 -2 0; 0 2 0; 2 -1 2] |
2, -2, -2 | 4, 2, 1 | [2 -2 1; 0 -2 2; 0 0 -2] |
2, 2, -2 | 4, 2, 1 | [2 -2 1; 0 2 -2; 0 0 -2] |
2, 2, 2 | 4, 2, 1 | [2 -2 1; 0 2 -2; 0 0 2] |
2, -2, -2 | 4, 2, 1 | [2 -1 -2; 0 -2 0; 0 -2 -2] |
2, 2, -2 | 4, 2, 1 | [2 -1 -2; 0 -2 0; 0 2 2] |
2, 2, 2 | 4, 2, 1 | [2 -1 -2; 0 2 0; 0 2 2] |
2, 2, -2 | 4, 2, 1 | [2 -1 2; 0 -2 0; 0 -2 2] |
2, -2, -2 | 4, 2, 1 | [2 -1 2; 0 -2 0; 0 2 -2] |
2, 2, 2 | 4, 2, 1 | [2 -1 2; 0 2 0; 0 -2 2] |
-2, 2, 2 | 4, 2, 1 | [2 0 -2; -2 -2 1; 0 0 2] |
2, 2, -2 | 4, 2, 1 | [2 0 -2; -2 2 1; 0 0 -2] |
2, 2, 2 | 4, 2, 1 | [2 0 -2; -2 2 1; 0 0 2] |
-2, 2, 2 | 4, 2, 1 | [2 0 -2; 2 -2 -1; 0 0 2] |
2, 2, -2 | 4, 2, 1 | [2 0 -2; 2 2 -1; 0 0 -2] |
2, 2, 2 | 4, 2, 1 | [2 0 -2; 2 2 -1; 0 0 2] |
-2, -2, 2 | 4, 2, 1 | [2 0 0; -2 -2 0; -1 -2 -2] |
-2, -2, 2 | 4, 2, 1 | [2 0 0; -2 -2 0; 1 2 -2] |
-2, 2, 2 | 4, 2, 1 | [2 0 0; -2 2 0; -1 2 -2] |
2, 2, 2 | 4, 2, 1 | [2 0 0; -2 2 0; -1 2 2] |
-2, 2, 2 | 4, 2, 1 | [2 0 0; -2 2 0; 1 -2 -2] |
2, 2, 2 | 4, 2, 1 | [2 0 0; -2 2 0; 1 -2 2] |
-2, -2, 2 | 4, 2, 1 | [2 0 0; -1 -2 -2; -2 0 -2] |
-2, 2, 2 | 4, 2, 1 | [2 0 0; -1 -2 -2; 2 0 2] |
-2, 2, 2 | 4, 2, 1 | [2 0 0; -1 -2 2; -2 0 2] |
-2, -2, 2 | 4, 2, 1 | [2 0 0; -1 -2 2; 2 0 -2] |
2, 2, 2 | 4, 2, 1 | [2 0 0; -1 2 -2; 2 0 2] |
2, 2, 2 | 4, 2, 1 | [2 0 0; -1 2 2; -2 0 2] |
-2, 2, 2 | 4, 2, 1 | [2 0 0; 1 -2 -2; -2 0 2] |
-2, -2, 2 | 4, 2, 1 | [2 0 0; 1 -2 -2; 2 0 -2] |
-2, -2, 2 | 4, 2, 1 | [2 0 0; 1 -2 2; -2 0 -2] |
-2, 2, 2 | 4, 2, 1 | [2 0 0; 1 -2 2; 2 0 2] |
2, 2, 2 | 4, 2, 1 | [2 0 0; 1 2 -2; -2 0 2] |
2, 2, 2 | 4, 2, 1 | [2 0 0; 1 2 2; 2 0 2] |
-2, -2, 2 | 4, 2, 1 | [2 0 0; 2 -2 0; -1 2 -2] |
-2, -2, 2 | 4, 2, 1 | [2 0 0; 2 -2 0; 1 -2 -2] |
-2, 2, 2 | 4, 2, 1 | [2 0 0; 2 2 0; -1 -2 -2] |
2, 2, 2 | 4, 2, 1 | [2 0 0; 2 2 0; -1 -2 2] |
-2, 2, 2 | 4, 2, 1 | [2 0 0; 2 2 0; 1 2 -2] |
2, 2, 2 | 4, 2, 1 | [2 0 0; 2 2 0; 1 2 2] |
-2, 2, 2 | 4, 2, 1 | [2 0 2; -2 -2 -1; 0 0 2] |
2, 2, -2 | 4, 2, 1 | [2 0 2; -2 2 -1; 0 0 -2] |
2, 2, 2 | 4, 2, 1 | [2 0 2; -2 2 -1; 0 0 2] |
-2, 2, 2 | 4, 2, 1 | [2 0 2; 2 -2 1; 0 0 2] |
2, 2, -2 | 4, 2, 1 | [2 0 2; 2 2 1; 0 0 -2] |
2, 2, 2 | 4, 2, 1 | [2 0 2; 2 2 1; 0 0 2] |
2, 2, -2 | 4, 2, 1 | [2 1 -2; 0 -2 0; 0 -2 2] |
2, -2, -2 | 4, 2, 1 | [2 1 -2; 0 -2 0; 0 2 -2] |
2, 2, 2 | 4, 2, 1 | [2 1 -2; 0 2 0; 0 -2 2] |
2, -2, -2 | 4, 2, 1 | [2 1 2; 0 -2 0; 0 -2 -2] |
2, 2, -2 | 4, 2, 1 | [2 1 2; 0 -2 0; 0 2 2] |
2, 2, 2 | 4, 2, 1 | [2 1 2; 0 2 0; 0 2 2] |
2, -2, -2 | 4, 2, 1 | [2 2 -1; 0 -2 2; 0 0 -2] |
2, 2, -2 | 4, 2, 1 | [2 2 -1; 0 2 -2; 0 0 -2] |
2, 2, 2 | 4, 2, 1 | [2 2 -1; 0 2 -2; 0 0 2] |
2, 2, -2 | 4, 2, 1 | [2 2 0; 0 -2 0; -2 -1 2] |
2, 2, -2 | 4, 2, 1 | [2 2 0; 0 -2 0; 2 1 2] |
-2, 2, 2 | 4, 2, 1 | [2 2 0; 0 2 0; -2 -1 -2] |
2, 2, 2 | 4, 2, 1 | [2 2 0; 0 2 0; -2 -1 2] |
-2, 2, 2 | 4, 2, 1 | [2 2 0; 0 2 0; 2 1 -2] |
2, 2, 2 | 4, 2, 1 | [2 2 0; 0 2 0; 2 1 2] |
2, -2, -2 | 4, 2, 1 | [2 2 1; 0 -2 -2; 0 0 -2] |
2, 2, -2 | 4, 2, 1 | [2 2 1; 0 2 2; 0 0 -2] |
2, 2, 2 | 4, 2, 1 | [2 2 1; 0 2 2; 0 0 2] |
There are no invertible defective matrices that have these characteristics.
There are no invertible defective matrices that have these characteristics other than those that are scalar multiples of previously listed matrices.
There are no invertible defective matrices that have these characteristics.