The following are essentially all 3 × 3 singular defective matrices that have both integer eigenvalues and integer singular values. They are grouped based on the maximum integer in absolute value in the matrix. The singular values are sorted, so if you want matrix that has two repeated singular values, you can search for, for example, "1, 1".
While the matrices are in the Matlab format, some of these have been tested in Maple to ensure that they are not the result of numeric error.
These are all such matrices up to multiplication by -1, in which case, the singular values are unchanged.
Eigenvalues | Singular values | Matrix |
---|---|---|
-1, 0, -1 | 2, 1, 0 | [0 0 1; -1 -1 1; 0 0 -1] |
1, 0, 1 | 2, 1, 0 | [0 0 1; -1 1 -1; 0 0 1] |
-1, 0, -1 | 2, 1, 0 | [0 0 1; 1 -1 -1; 0 0 -1] |
1, 0, 1 | 2, 1, 0 | [0 0 1; 1 1 1; 0 0 1] |
-1, 0, -1 | 2, 1, 0 | [0 1 0; 0 -1 0; -1 1 -1] |
-1, 0, -1 | 2, 1, 0 | [0 1 0; 0 -1 0; 1 -1 -1] |
1, 0, 1 | 2, 1, 0 | [0 1 0; 0 1 0; -1 -1 1] |
1, 0, 1 | 2, 1, 0 | [0 1 0; 0 1 0; 1 1 1] |
1, 0, 0 | 2, 1, 0 | [1 -1 -1; -1 0 0; 1 0 0] |
1, 0, 0 | 3, 0, 0 | [1 -1 -1; -1 1 1; 1 -1 -1] |
1, 0, 1 | 2, 1, 0 | [1 -1 -1; 0 0 1; 0 0 1] |
1, 0, 1 | 2, 1, 0 | [1 -1 -1; 0 1 0; 0 1 0] |
1, 0, 0 | 3, 0, 0 | [1 -1 -1; 1 -1 -1; -1 1 1] |
1, 0, 0 | 2, 1, 0 | [1 -1 -1; 1 0 0; -1 0 0] |
0, 0, -1 | 2, 1, 0 | [1 -1 0; 1 -1 0; 0 0 -1] |
0, 0, 1 | 2, 1, 0 | [1 -1 0; 1 -1 0; 0 0 1] |
1, 0, 0 | 2, 1, 0 | [1 -1 1; -1 0 0; -1 0 0] |
1, 0, 0 | 3, 0, 0 | [1 -1 1; -1 1 -1; -1 1 -1] |
1, 0, 1 | 2, 1, 0 | [1 -1 1; 0 0 -1; 0 0 1] |
1, 0, 1 | 2, 1, 0 | [1 -1 1; 0 1 0; 0 -1 0] |
1, 0, 0 | 3, 0, 0 | [1 -1 1; 1 -1 1; 1 -1 1] |
1, 0, 0 | 2, 1, 0 | [1 -1 1; 1 0 0; 1 0 0] |
0, 0, -1 | 2, 1, 0 | [1 0 -1; 0 -1 0; 1 0 -1] |
0, 0, 1 | 2, 1, 0 | [1 0 -1; 0 1 0; 1 0 -1] |
1, 0, 1 | 2, 1, 0 | [1 0 0; -1 0 0; -1 1 1] |
1, 0, 1 | 2, 1, 0 | [1 0 0; -1 0 0; 1 -1 1] |
1, 0, 1 | 2, 1, 0 | [1 0 0; -1 1 -1; 1 0 0] |
1, 0, 1 | 2, 1, 0 | [1 0 0; -1 1 1; -1 0 0] |
0, 0, 1 | 2, 1, 0 | [1 0 0; 0 -1 -1; 0 1 1] |
0, 0, 1 | 2, 1, 0 | [1 0 0; 0 -1 1; 0 -1 1] |
0, 0, 1 | 2, 1, 0 | [1 0 0; 0 1 -1; 0 1 -1] |
0, 0, 1 | 2, 1, 0 | [1 0 0; 0 1 1; 0 -1 -1] |
1, 0, 1 | 2, 1, 0 | [1 0 0; 1 0 0; -1 -1 1] |
1, 0, 1 | 2, 1, 0 | [1 0 0; 1 0 0; 1 1 1] |
1, 0, 1 | 2, 1, 0 | [1 0 0; 1 1 -1; -1 0 0] |
1, 0, 1 | 2, 1, 0 | [1 0 0; 1 1 1; 1 0 0] |
0, 0, -1 | 2, 1, 0 | [1 0 1; 0 -1 0; -1 0 -1] |
0, 0, 1 | 2, 1, 0 | [1 0 1; 0 1 0; -1 0 -1] |
1, 0, 0 | 3, 0, 0 | [1 1 -1; -1 -1 1; -1 -1 1] |
1, 0, 0 | 2, 1, 0 | [1 1 -1; -1 0 0; -1 0 0] |
1, 0, 1 | 2, 1, 0 | [1 1 -1; 0 0 -1; 0 0 1] |
1, 0, 1 | 2, 1, 0 | [1 1 -1; 0 1 0; 0 -1 0] |
1, 0, 0 | 2, 1, 0 | [1 1 -1; 1 0 0; 1 0 0] |
1, 0, 0 | 3, 0, 0 | [1 1 -1; 1 1 -1; 1 1 -1] |
0, 0, -1 | 2, 1, 0 | [1 1 0; -1 -1 0; 0 0 -1] |
0, 0, 1 | 2, 1, 0 | [1 1 0; -1 -1 0; 0 0 1] |
1, 0, 0 | 3, 0, 0 | [1 1 1; -1 -1 -1; 1 1 1] |
1, 0, 0 | 2, 1, 0 | [1 1 1; -1 0 0; 1 0 0] |
1, 0, 1 | 2, 1, 0 | [1 1 1; 0 0 1; 0 0 1] |
1, 0, 1 | 2, 1, 0 | [1 1 1; 0 1 0; 0 1 0] |
1, 0, 0 | 2, 1, 0 | [1 1 1; 1 0 0; -1 0 0] |
1, 0, 0 | 3, 0, 0 | [1 1 1; 1 1 1; -1 -1 -1] |
These are all such matrices up to multiplication by -1, in which case, the singular values are unchanged, or integer multiples of previous matrices.
Eigenvalues | Singular values | Matrix |
---|---|---|
2, 2, 0 | 3, 2, 0 | [0 0 0; 0 2 -1; -2 0 2] |
2, 2, 0 | 3, 2, 0 | [0 0 0; 0 2 -1; 2 0 2] |
2, 2, 0 | 3, 2, 0 | [0 0 0; 0 2 1; -2 0 2] |
2, 2, 0 | 3, 2, 0 | [0 0 0; 0 2 1; 2 0 2] |
-2, -2, 0 | 3, 2, 0 | [0 0 0; 2 -2 0; 0 -1 -2] |
-2, -2, 0 | 3, 2, 0 | [0 0 0; 2 -2 0; 0 1 -2] |
2, 2, 0 | 3, 2, 0 | [0 0 0; 2 2 0; 0 -1 2] |
2, 2, 0 | 3, 2, 0 | [0 0 0; 2 2 0; 0 1 2] |
0, -2, -2 | 3, 3, 0 | [0 1 -2; -2 -2 0; -1 0 -2] |
0, 2, 2 | 3, 3, 0 | [0 1 -2; -2 2 0; -1 0 2] |
0, -2, -2 | 3, 3, 0 | [0 1 -2; 2 -2 0; 1 0 -2] |
0, 2, 2 | 3, 3, 0 | [0 1 -2; 2 2 0; 1 0 2] |
0, -2, -2 | 3, 3, 0 | [0 1 2; -2 -2 0; 1 0 -2] |
0, 2, 2 | 3, 3, 0 | [0 1 2; -2 2 0; 1 0 2] |
0, -2, -2 | 3, 3, 0 | [0 1 2; 2 -2 0; -1 0 -2] |
0, 2, 2 | 3, 3, 0 | [0 1 2; 2 2 0; -1 0 2] |
0, -2, -2 | 3, 3, 0 | [0 2 -1; -1 -2 0; -2 0 -2] |
0, 2, 2 | 3, 3, 0 | [0 2 -1; -1 2 0; -2 0 2] |
0, -2, -2 | 3, 3, 0 | [0 2 -1; 1 -2 0; 2 0 -2] |
0, 2, 2 | 3, 3, 0 | [0 2 -1; 1 2 0; 2 0 2] |
0, -2, -2 | 3, 3, 0 | [0 2 1; -1 -2 0; 2 0 -2] |
0, 2, 2 | 3, 3, 0 | [0 2 1; -1 2 0; 2 0 2] |
0, -2, -2 | 3, 3, 0 | [0 2 1; 1 -2 0; -2 0 -2] |
0, 2, 2 | 3, 3, 0 | [0 2 1; 1 2 0; -2 0 2] |
0, 0, 1 | 4, 3, 0 | [1 0 0; -2 -2 -2; -2 2 2] |
0, 0, 1 | 4, 3, 0 | [1 0 0; -2 -2 2; 2 -2 2] |
0, 0, 1 | 4, 3, 0 | [1 0 0; -2 2 -2; 2 2 -2] |
0, 0, 1 | 4, 3, 0 | [1 0 0; -2 2 2; -2 -2 -2] |
0, 0, 1 | 4, 3, 0 | [1 0 0; 2 -2 -2; 2 2 2] |
0, 0, 1 | 4, 3, 0 | [1 0 0; 2 -2 2; -2 -2 2] |
0, 0, 1 | 4, 3, 0 | [1 0 0; 2 2 -2; -2 2 -2] |
0, 0, 1 | 4, 3, 0 | [1 0 0; 2 2 2; 2 -2 -2] |
0, 0, -1 | 4, 3, 0 | [2 -2 -2; 0 -1 0; 2 2 -2] |
0, 0, 1 | 4, 3, 0 | [2 -2 -2; 0 1 0; 2 2 -2] |
0, 0, -1 | 4, 3, 0 | [2 -2 -2; 2 -2 2; 0 0 -1] |
0, 0, 1 | 4, 3, 0 | [2 -2 -2; 2 -2 2; 0 0 1] |
2, 2, 0 | 3, 2, 0 | [2 -2 0; 0 0 0; -1 0 2] |
2, 2, 0 | 3, 2, 0 | [2 -2 0; 0 0 0; 1 0 2] |
0, 0, -1 | 4, 3, 0 | [2 -2 2; 0 -1 0; -2 -2 -2] |
0, 0, 1 | 4, 3, 0 | [2 -2 2; 0 1 0; -2 -2 -2] |
0, 0, -1 | 4, 3, 0 | [2 -2 2; 2 -2 -2; 0 0 -1] |
0, 0, 1 | 4, 3, 0 | [2 -2 2; 2 -2 -2; 0 0 1] |
2, 2, 0 | 3, 2, 0 | [2 -1 0; 0 2 -2; 0 0 0] |
2, 2, 0 | 3, 2, 0 | [2 -1 0; 0 2 2; 0 0 0] |
2, 2, 0 | 3, 2, 0 | [2 0 -2; -1 2 0; 0 0 0] |
2, 2, 0 | 3, 2, 0 | [2 0 -2; 1 2 0; 0 0 0] |
2, 2, 0 | 3, 2, 0 | [2 0 -1; 0 0 0; 0 -2 2] |
2, 2, 0 | 3, 2, 0 | [2 0 -1; 0 0 0; 0 2 2] |
2, 2, 0 | 3, 2, 0 | [2 0 1; 0 0 0; 0 -2 2] |
2, 2, 0 | 3, 2, 0 | [2 0 1; 0 0 0; 0 2 2] |
2, 2, 0 | 3, 2, 0 | [2 0 2; -1 2 0; 0 0 0] |
2, 2, 0 | 3, 2, 0 | [2 0 2; 1 2 0; 0 0 0] |
2, 2, 0 | 3, 2, 0 | [2 1 0; 0 2 -2; 0 0 0] |
2, 2, 0 | 3, 2, 0 | [2 1 0; 0 2 2; 0 0 0] |
0, 0, -1 | 4, 3, 0 | [2 2 -2; -2 -2 -2; 0 0 -1] |
0, 0, 1 | 4, 3, 0 | [2 2 -2; -2 -2 -2; 0 0 1] |
0, 0, -1 | 4, 3, 0 | [2 2 -2; 0 -1 0; 2 -2 -2] |
0, 0, 1 | 4, 3, 0 | [2 2 -2; 0 1 0; 2 -2 -2] |
2, 2, 0 | 3, 2, 0 | [2 2 0; 0 0 0; -1 0 2] |
2, 2, 0 | 3, 2, 0 | [2 2 0; 0 0 0; 1 0 2] |
0, 0, -1 | 4, 3, 0 | [2 2 2; -2 -2 2; 0 0 -1] |
0, 0, 1 | 4, 3, 0 | [2 2 2; -2 -2 2; 0 0 1] |
0, 0, -1 | 4, 3, 0 | [2 2 2; 0 -1 0; -2 2 -2] |
0, 0, 1 | 4, 3, 0 | [2 2 2; 0 1 0; -2 2 -2] |
These are all such matrices up to multiplication by -1, in which case, the singular values are unchanged, or integer multiples of previous matrices.
Eigenvalues | Singular values | Matrix |
---|---|---|
1, 0, 0 | 8, 3, 0 | [1 -3 -3; -3 -3 -3; 3 3 3] |
1, 0, 0 | 5, 4, 0 | [1 -3 -3; -3 -1 -1; 3 1 1] |
1, 0, 0 | 7, 2, 0 | [1 -3 -3; -3 2 2; 3 -2 -2] |
1, 0, 0 | 7, 2, 0 | [1 -3 -3; 3 -2 -2; -3 2 2] |
1, 0, 0 | 5, 4, 0 | [1 -3 -3; 3 1 1; -3 -1 -1] |
1, 0, 0 | 8, 3, 0 | [1 -3 -3; 3 3 3; -3 -3 -3] |
1, 0, 0 | 8, 3, 0 | [1 -3 3; -3 -3 3; -3 -3 3] |
1, 0, 0 | 5, 4, 0 | [1 -3 3; -3 -1 1; -3 -1 1] |
1, 0, 0 | 7, 2, 0 | [1 -3 3; -3 2 -2; -3 2 -2] |
1, 0, 0 | 7, 2, 0 | [1 -3 3; 3 -2 2; 3 -2 2] |
1, 0, 0 | 5, 4, 0 | [1 -3 3; 3 1 -1; 3 1 -1] |
1, 0, 0 | 8, 3, 0 | [1 -3 3; 3 3 -3; 3 3 -3] |
1, 0, 0 | 7, 2, 0 | [1 3 -3; -3 -2 2; -3 -2 2] |
1, 0, 0 | 5, 4, 0 | [1 3 -3; -3 1 -1; -3 1 -1] |
1, 0, 0 | 8, 3, 0 | [1 3 -3; -3 3 -3; -3 3 -3] |
1, 0, 0 | 8, 3, 0 | [1 3 -3; 3 -3 3; 3 -3 3] |
1, 0, 0 | 5, 4, 0 | [1 3 -3; 3 -1 1; 3 -1 1] |
1, 0, 0 | 7, 2, 0 | [1 3 -3; 3 2 -2; 3 2 -2] |
1, 0, 0 | 7, 2, 0 | [1 3 3; -3 -2 -2; 3 2 2] |
1, 0, 0 | 5, 4, 0 | [1 3 3; -3 1 1; 3 -1 -1] |
1, 0, 0 | 8, 3, 0 | [1 3 3; -3 3 3; 3 -3 -3] |
1, 0, 0 | 8, 3, 0 | [1 3 3; 3 -3 -3; -3 3 3] |
1, 0, 0 | 5, 4, 0 | [1 3 3; 3 -1 -1; -3 1 1] |
1, 0, 0 | 7, 2, 0 | [1 3 3; 3 2 2; -3 -2 -2] |
3, 0, 0 | 6, 5, 0 | [3 -3 -3; -3 -2 -2; 3 2 2] |
3, 0, 0 | 6, 3, 0 | [3 -3 -3; -1 -2 -2; 1 2 2] |
3, 0, 0 | 6, 3, 0 | [3 -3 -3; 1 2 2; -1 -2 -2] |
3, 0, 0 | 6, 5, 0 | [3 -3 -3; 3 2 2; -3 -2 -2] |
3, 0, 0 | 6, 5, 0 | [3 -3 3; -3 -2 2; -3 -2 2] |
3, 0, 0 | 6, 3, 0 | [3 -3 3; -1 -2 2; -1 -2 2] |
3, 0, 0 | 6, 3, 0 | [3 -3 3; 1 2 -2; 1 2 -2] |
3, 0, 0 | 6, 5, 0 | [3 -3 3; 3 2 -2; 3 2 -2] |
3, 0, 0 | 6, 5, 0 | [3 3 -3; -3 2 -2; -3 2 -2] |
3, 0, 0 | 6, 3, 0 | [3 3 -3; -1 2 -2; -1 2 -2] |
3, 0, 0 | 6, 3, 0 | [3 3 -3; 1 -2 2; 1 -2 2] |
3, 0, 0 | 6, 5, 0 | [3 3 -3; 3 -2 2; 3 -2 2] |
3, 0, 0 | 6, 5, 0 | [3 3 3; -3 2 2; 3 -2 -2] |
3, 0, 0 | 6, 3, 0 | [3 3 3; -1 2 2; 1 -2 -2] |
3, 0, 0 | 6, 3, 0 | [3 3 3; 1 -2 -2; -1 2 2] |
3, 0, 0 | 6, 5, 0 | [3 3 3; 3 -2 -2; -3 2 2] |
3, 0, 0 | 9, 0, 0 | [3 3 3; 3 3 3; -3 -3 -3] |
These are all such matrices up to multiplication by -1, in which case, the singular values are unchanged, or integer multiples of previous matrices.
Eigenvalues | Singular values | Matrix |
---|---|---|
-4, -4, 0 | 7, 3, 0 | [0 0 0; 1 -4 0; -4 3 -4] |
-4, -4, 0 | 7, 3, 0 | [0 0 0; 1 -4 0; 4 -3 -4] |
4, 4, 0 | 7, 3, 0 | [0 0 0; 1 4 0; -4 -3 4] |
4, 4, 0 | 7, 3, 0 | [0 0 0; 1 4 0; 4 3 4] |
-2, -2, 0 | 7, 3, 0 | [0 0 0; 3 -4 -4; -4 1 0] |
-2, -2, 0 | 7, 3, 0 | [0 0 0; 3 -4 4; 4 -1 0] |
2, 2, 0 | 7, 3, 0 | [0 0 0; 3 4 -4; 4 1 0] |
2, 2, 0 | 7, 3, 0 | [0 0 0; 3 4 4; -4 -1 0] |
-4, -4, 0 | 7, 3, 0 | [0 0 0; 4 -4 -3; 1 0 -4] |
-4, -4, 0 | 7, 3, 0 | [0 0 0; 4 -4 3; -1 0 -4] |
2, 2, 0 | 7, 3, 0 | [0 0 0; 4 0 -1; -3 4 4] |
-2, -2, 0 | 7, 3, 0 | [0 0 0; 4 0 -1; 3 4 -4] |
-2, -2, 0 | 7, 3, 0 | [0 0 0; 4 0 1; -3 -4 -4] |
2, 2, 0 | 7, 3, 0 | [0 0 0; 4 0 1; 3 -4 4] |
4, 4, 0 | 7, 3, 0 | [0 0 0; 4 4 -3; -1 0 4] |
4, 4, 0 | 7, 3, 0 | [0 0 0; 4 4 3; 1 0 4] |
-2, -2, 0 | 7, 3, 0 | [0 1 -4; -4 -4 3; 0 0 0] |
2, 2, 0 | 7, 3, 0 | [0 1 -4; -4 4 -3; 0 0 0] |
-2, -2, 0 | 7, 3, 0 | [0 1 4; -4 -4 -3; 0 0 0] |
2, 2, 0 | 7, 3, 0 | [0 1 4; -4 4 3; 0 0 0] |
2, 2, 0 | 7, 3, 0 | [0 4 -1; 0 0 0; 4 -3 4] |
-2, -2, 0 | 7, 3, 0 | [0 4 -1; 0 0 0; 4 3 -4] |
-2, -2, 0 | 7, 3, 0 | [0 4 1; 0 0 0; -4 -3 -4] |
2, 2, 0 | 7, 3, 0 | [0 4 1; 0 0 0; -4 3 4] |
2, 0, 0 | 6, 6, 0 | [2 -4 -4; -4 -1 -1; 4 1 1] |
2, 0, 0 | 10, 2, 0 | [2 -4 -4; -4 3 3; 4 -3 -3] |
2, 0, 0 | 10, 2, 0 | [2 -4 -4; 4 -3 -3; -4 3 3] |
2, 0, 0 | 6, 6, 0 | [2 -4 -4; 4 1 1; -4 -1 -1] |
4, 4, 0 | 6, 5, 0 | [2 -4 0; -1 2 0; -4 -2 4] |
4, 4, 0 | 6, 5, 0 | [2 -4 0; -1 2 0; 4 2 4] |
-4, 0, 0 | 6, 5, 0 | [2 -4 0; 1 -2 0; -4 -2 -4] |
4, 0, 0 | 6, 5, 0 | [2 -4 0; 1 -2 0; -4 -2 4] |
-4, 0, 0 | 6, 5, 0 | [2 -4 0; 1 -2 0; 4 2 -4] |
4, 0, 0 | 6, 5, 0 | [2 -4 0; 1 -2 0; 4 2 4] |
2, 0, 0 | 6, 6, 0 | [2 -4 4; -4 -1 1; -4 -1 1] |
2, 0, 0 | 10, 2, 0 | [2 -4 4; -4 3 -3; -4 3 -3] |
2, 0, 0 | 10, 2, 0 | [2 -4 4; 4 -3 3; 4 -3 3] |
2, 0, 0 | 6, 6, 0 | [2 -4 4; 4 1 -1; 4 1 -1] |
4, 4, 0 | 6, 5, 0 | [2 -1 0; -4 2 0; -2 -4 4] |
4, 4, 0 | 6, 5, 0 | [2 -1 0; -4 2 0; 2 4 4] |
-4, 0, 0 | 6, 5, 0 | [2 -1 0; 4 -2 0; -2 -4 -4] |
4, 0, 0 | 6, 5, 0 | [2 -1 0; 4 -2 0; -2 -4 4] |
-4, 0, 0 | 6, 5, 0 | [2 -1 0; 4 -2 0; 2 4 -4] |
4, 0, 0 | 6, 5, 0 | [2 -1 0; 4 -2 0; 2 4 4] |
-4, 0, 0 | 6, 5, 0 | [2 0 -4; -4 -4 -2; 1 0 -2] |
4, 4, 0 | 6, 5, 0 | [2 0 -4; -4 4 -2; -1 0 2] |
4, 0, 0 | 6, 5, 0 | [2 0 -4; -4 4 -2; 1 0 -2] |
-4, 0, 0 | 6, 5, 0 | [2 0 -4; 4 -4 2; 1 0 -2] |
4, 4, 0 | 6, 5, 0 | [2 0 -4; 4 4 2; -1 0 2] |
4, 0, 0 | 6, 5, 0 | [2 0 -4; 4 4 2; 1 0 -2] |
-4, 0, 0 | 6, 5, 0 | [2 0 -1; -2 -4 -4; 4 0 -2] |
4, 4, 0 | 6, 5, 0 | [2 0 -1; -2 4 -4; -4 0 2] |
4, 0, 0 | 6, 5, 0 | [2 0 -1; -2 4 -4; 4 0 -2] |
-4, 0, 0 | 6, 5, 0 | [2 0 -1; 2 -4 4; 4 0 -2] |
4, 4, 0 | 6, 5, 0 | [2 0 -1; 2 4 4; -4 0 2] |
4, 0, 0 | 6, 5, 0 | [2 0 -1; 2 4 4; 4 0 -2] |
-4, 0, 0 | 6, 5, 0 | [2 0 1; -2 -4 4; -4 0 -2] |
4, 0, 0 | 6, 5, 0 | [2 0 1; -2 4 4; -4 0 -2] |
4, 4, 0 | 6, 5, 0 | [2 0 1; -2 4 4; 4 0 2] |
-4, 0, 0 | 6, 5, 0 | [2 0 1; 2 -4 -4; -4 0 -2] |
4, 0, 0 | 6, 5, 0 | [2 0 1; 2 4 -4; -4 0 -2] |
4, 4, 0 | 6, 5, 0 | [2 0 1; 2 4 -4; 4 0 2] |
-4, 0, 0 | 6, 5, 0 | [2 0 4; -4 -4 2; -1 0 -2] |
4, 0, 0 | 6, 5, 0 | [2 0 4; -4 4 2; -1 0 -2] |
4, 4, 0 | 6, 5, 0 | [2 0 4; -4 4 2; 1 0 2] |
-4, 0, 0 | 6, 5, 0 | [2 0 4; 4 -4 -2; -1 0 -2] |
4, 0, 0 | 6, 5, 0 | [2 0 4; 4 4 -2; -1 0 -2] |
4, 4, 0 | 6, 5, 0 | [2 0 4; 4 4 -2; 1 0 2] |
-4, 0, 0 | 6, 5, 0 | [2 1 0; -4 -2 0; -2 4 -4] |
4, 0, 0 | 6, 5, 0 | [2 1 0; -4 -2 0; -2 4 4] |
-4, 0, 0 | 6, 5, 0 | [2 1 0; -4 -2 0; 2 -4 -4] |
4, 0, 0 | 6, 5, 0 | [2 1 0; -4 -2 0; 2 -4 4] |
4, 4, 0 | 6, 5, 0 | [2 1 0; 4 2 0; -2 4 4] |
4, 4, 0 | 6, 5, 0 | [2 1 0; 4 2 0; 2 -4 4] |
2, 0, 0 | 10, 2, 0 | [2 4 -4; -4 -3 3; -4 -3 3] |
2, 0, 0 | 6, 6, 0 | [2 4 -4; -4 1 -1; -4 1 -1] |
2, 0, 0 | 6, 6, 0 | [2 4 -4; 4 -1 1; 4 -1 1] |
2, 0, 0 | 10, 2, 0 | [2 4 -4; 4 3 -3; 4 3 -3] |
-4, 0, 0 | 6, 5, 0 | [2 4 0; -1 -2 0; -4 2 -4] |
4, 0, 0 | 6, 5, 0 | [2 4 0; -1 -2 0; -4 2 4] |
-4, 0, 0 | 6, 5, 0 | [2 4 0; -1 -2 0; 4 -2 -4] |
4, 0, 0 | 6, 5, 0 | [2 4 0; -1 -2 0; 4 -2 4] |
4, 4, 0 | 6, 5, 0 | [2 4 0; 1 2 0; -4 2 4] |
4, 4, 0 | 6, 5, 0 | [2 4 0; 1 2 0; 4 -2 4] |
2, 0, 0 | 10, 2, 0 | [2 4 4; -4 -3 -3; 4 3 3] |
2, 0, 0 | 6, 6, 0 | [2 4 4; -4 1 1; 4 -1 -1] |
2, 0, 0 | 6, 6, 0 | [2 4 4; 4 -1 -1; -4 1 1] |
2, 0, 0 | 10, 2, 0 | [2 4 4; 4 3 3; -4 -3 -3] |
4, 4, 0 | 7, 3, 0 | [4 -4 -3; 0 0 0; 0 1 4] |
2, 2, 0 | 7, 3, 0 | [4 -4 -3; 1 0 -4; 0 0 0] |
4, 0, 0 | 6, 5, 0 | [4 -4 -2; 0 -2 4; 0 -1 2] |
4, 4, 0 | 6, 5, 0 | [4 -4 -2; 0 2 -4; 0 -1 2] |
4, 0, 0 | 6, 5, 0 | [4 -4 -2; 0 2 -4; 0 1 -2] |
4, 0, 0 | 6, 5, 0 | [4 -4 2; 0 -2 -4; 0 1 2] |
4, 0, 0 | 6, 5, 0 | [4 -4 2; 0 2 4; 0 -1 -2] |
4, 4, 0 | 6, 5, 0 | [4 -4 2; 0 2 4; 0 1 2] |
4, 4, 0 | 7, 3, 0 | [4 -4 3; 0 0 0; 0 -1 4] |
2, 2, 0 | 7, 3, 0 | [4 -4 3; 1 0 4; 0 0 0] |
2, 2, 0 | 7, 3, 0 | [4 -3 -4; 0 0 0; 1 -4 0] |
4, 4, 0 | 7, 3, 0 | [4 -3 -4; 0 4 1; 0 0 0] |
2, 2, 0 | 7, 3, 0 | [4 -3 4; 0 0 0; -1 4 0] |
4, 4, 0 | 7, 3, 0 | [4 -3 4; 0 4 -1; 0 0 0] |
4, 0, 0 | 6, 5, 0 | [4 -2 -4; 0 -2 1; 0 -4 2] |
4, 4, 0 | 6, 5, 0 | [4 -2 -4; 0 2 -1; 0 -4 2] |
4, 0, 0 | 6, 5, 0 | [4 -2 -4; 0 2 -1; 0 4 -2] |
4, 0, 0 | 6, 5, 0 | [4 -2 4; 0 -2 -1; 0 4 2] |
4, 0, 0 | 6, 5, 0 | [4 -2 4; 0 2 1; 0 -4 -2] |
4, 4, 0 | 6, 5, 0 | [4 -2 4; 0 2 1; 0 4 2] |
4, 4, 0 | 7, 3, 0 | [4 -1 0; 0 0 0; -3 4 4] |
4, 4, 0 | 7, 3, 0 | [4 -1 0; 0 0 0; 3 -4 4] |
4, 4, 0 | 7, 3, 0 | [4 0 -1; -3 4 4; 0 0 0] |
4, 4, 0 | 7, 3, 0 | [4 0 -1; 3 4 -4; 0 0 0] |
4, 4, 0 | 7, 3, 0 | [4 0 1; -3 4 -4; 0 0 0] |
4, 4, 0 | 7, 3, 0 | [4 0 1; 3 4 4; 0 0 0] |
4, 4, 0 | 7, 3, 0 | [4 1 0; 0 0 0; -3 -4 4] |
4, 4, 0 | 7, 3, 0 | [4 1 0; 0 0 0; 3 4 4] |
4, 0, 0 | 6, 5, 0 | [4 2 -4; 0 -2 -1; 0 4 2] |
4, 0, 0 | 6, 5, 0 | [4 2 -4; 0 2 1; 0 -4 -2] |
4, 4, 0 | 6, 5, 0 | [4 2 -4; 0 2 1; 0 4 2] |
4, 0, 0 | 6, 5, 0 | [4 2 4; 0 -2 1; 0 -4 2] |
4, 4, 0 | 6, 5, 0 | [4 2 4; 0 2 -1; 0 -4 2] |
4, 0, 0 | 6, 5, 0 | [4 2 4; 0 2 -1; 0 4 -2] |
2, 2, 0 | 7, 3, 0 | [4 3 -4; 0 0 0; 1 4 0] |
4, 4, 0 | 7, 3, 0 | [4 3 -4; 0 4 -1; 0 0 0] |
2, 2, 0 | 7, 3, 0 | [4 3 4; 0 0 0; -1 -4 0] |
4, 4, 0 | 7, 3, 0 | [4 3 4; 0 4 1; 0 0 0] |
2, 2, 0 | 7, 3, 0 | [4 4 -3; -1 0 4; 0 0 0] |
4, 4, 0 | 7, 3, 0 | [4 4 -3; 0 0 0; 0 -1 4] |
4, 0, 0 | 6, 5, 0 | [4 4 -2; 0 -2 -4; 0 1 2] |
4, 0, 0 | 6, 5, 0 | [4 4 -2; 0 2 4; 0 -1 -2] |
4, 4, 0 | 6, 5, 0 | [4 4 -2; 0 2 4; 0 1 2] |
4, 0, 0 | 6, 5, 0 | [4 4 2; 0 -2 4; 0 -1 2] |
4, 4, 0 | 6, 5, 0 | [4 4 2; 0 2 -4; 0 -1 2] |
4, 0, 0 | 6, 5, 0 | [4 4 2; 0 2 -4; 0 1 -2] |
2, 2, 0 | 7, 3, 0 | [4 4 3; -1 0 -4; 0 0 0] |
4, 4, 0 | 7, 3, 0 | [4 4 3; 0 0 0; 0 1 4] |
These are all such matrices up to multiplication by -1, in which case, the singular values are unchanged, or integer multiples of previous matrices.
Eigenvalues | Singular values | Matrix |
---|---|---|
0, 1, 0 | 9, 6, 0 | [1 -5 -5; -5 -2 -2; 5 2 2] |
1, 0, 0 | 11, 4, 0 | [1 -5 -5; -5 3 3; 5 -3 -3] |
1, 0, 0 | 11, 4, 0 | [1 -5 -5; 5 -3 -3; -5 3 3] |
0, 1, 0 | 9, 6, 0 | [1 -5 -5; 5 2 2; -5 -2 -2] |
0, 1, 0 | 9, 6, 0 | [1 -5 5; -5 -2 2; -5 -2 2] |
1, 0, 0 | 11, 4, 0 | [1 -5 5; -5 3 -3; -5 3 -3] |
1, 0, 0 | 11, 4, 0 | [1 -5 5; 5 -3 3; 5 -3 3] |
0, 1, 0 | 9, 6, 0 | [1 -5 5; 5 2 -2; 5 2 -2] |
0, -3, 0 | 9, 0, 0 | [1 -1 -1; -1 1 1; 5 -5 -5] |
0, 5, 0 | 9, 0, 0 | [1 -1 -1; 1 -1 -1; -5 5 5] |
0, -3, 0 | 9, 0, 0 | [1 -1 1; -1 1 -1; -5 5 -5] |
0, 5, 0 | 9, 0, 0 | [1 -1 1; 1 -1 1; 5 -5 5] |
0, 5, 0 | 9, 0, 0 | [1 1 -1; -1 -1 1; -5 -5 5] |
0, -3, 0 | 9, 0, 0 | [1 1 -1; 1 1 -1; 5 5 -5] |
0, 5, 0 | 9, 0, 0 | [1 1 1; -1 -1 -1; 5 5 5] |
0, -3, 0 | 9, 0, 0 | [1 1 1; 1 1 1; -5 -5 -5] |
1, 0, 0 | 11, 4, 0 | [1 5 -5; -5 -3 3; -5 -3 3] |
0, 1, 0 | 9, 6, 0 | [1 5 -5; -5 2 -2; -5 2 -2] |
0, 1, 0 | 9, 6, 0 | [1 5 -5; 5 -2 2; 5 -2 2] |
1, 0, 0 | 11, 4, 0 | [1 5 -5; 5 3 -3; 5 3 -3] |
1, 0, 0 | 11, 4, 0 | [1 5 5; -5 -3 -3; 5 3 3] |
0, 1, 0 | 9, 6, 0 | [1 5 5; -5 2 2; 5 -2 -2] |
0, 1, 0 | 9, 6, 0 | [1 5 5; 5 -2 -2; -5 2 2] |
1, 0, 0 | 11, 4, 0 | [1 5 5; 5 3 3; -5 -3 -3] |
0, 3, 0 | 8, 7, 0 | [3 -5 -5; -5 -1 -1; 5 1 1] |
0, 3, 0 | 13, 2, 0 | [3 -5 -5; -5 4 4; 5 -4 -4] |
0, 3, 0 | 13, 2, 0 | [3 -5 -5; 5 -4 -4; -5 4 4] |
0, 3, 0 | 8, 7, 0 | [3 -5 -5; 5 1 1; -5 -1 -1] |
0, 3, 0 | 8, 7, 0 | [3 -5 5; -5 -1 1; -5 -1 1] |
0, 3, 0 | 13, 2, 0 | [3 -5 5; -5 4 -4; -5 4 -4] |
0, 3, 0 | 13, 2, 0 | [3 -5 5; 5 -4 4; 5 -4 4] |
0, 3, 0 | 8, 7, 0 | [3 -5 5; 5 1 -1; 5 1 -1] |
0, 3, 0 | 13, 2, 0 | [3 5 -5; -5 -4 4; -5 -4 4] |
0, 3, 0 | 8, 7, 0 | [3 5 -5; -5 1 -1; -5 1 -1] |
0, 3, 0 | 8, 7, 0 | [3 5 -5; 5 -1 1; 5 -1 1] |
0, 3, 0 | 13, 2, 0 | [3 5 -5; 5 4 -4; 5 4 -4] |
0, 3, 0 | 13, 2, 0 | [3 5 5; -5 -4 -4; 5 4 4] |
0, 3, 0 | 8, 7, 0 | [3 5 5; -5 1 1; 5 -1 -1] |
0, 3, 0 | 8, 7, 0 | [3 5 5; 5 -1 -1; -5 1 1] |
0, 3, 0 | 13, 2, 0 | [3 5 5; 5 4 4; -5 -4 -4] |
0, 0, -5 | 10, 5, 0 | [5 -4 -3; 4 -5 0; 3 0 -5] |
0, 0, -5 | 10, 5, 0 | [5 -4 3; 4 -5 0; -3 0 -5] |
0, 0, -5 | 10, 5, 0 | [5 -3 -4; 3 -5 0; 4 0 -5] |
0, 0, -5 | 10, 5, 0 | [5 -3 4; 3 -5 0; -4 0 -5] |
0, 0, -5 | 10, 5, 0 | [5 3 -4; -3 -5 0; 4 0 -5] |
0, 0, -5 | 10, 5, 0 | [5 3 4; -3 -5 0; -4 0 -5] |
0, 0, -5 | 10, 5, 0 | [5 4 -3; -4 -5 0; 3 0 -5] |
0, 0, -5 | 10, 5, 0 | [5 4 3; -4 -5 0; -3 0 -5] |