IEEE International Conference on Image Processing, September 2002

 

No-Reference Perceptual Quality Assessment of JPEG Compressed Images

 Zhou Wang, H. R. Sheikh and Alan C. Bovik

Laboratory for Image and Video Engineering (LIVE), Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712-1084

PDF File (1.2M)

Abstract: Human observers can easily assess the quality of a distorted image without examining the original image as a reference. By contrast, designing objective No-Reference (NR) quality measurement algorithms is a very difficult task. Currently, NR quality assessment is feasible only when prior knowledge about the types of image distortion is available.

This research aims to develop NR quality measurement algorithms for JPEG compressed images. First, we established a JPEG image database and subjective experiments were conducted on the database. We show that Peak Signal-to-Noise Ratio (PSNR), which requires the reference images, is a poor indicator of subjective quality. Therefore, tuning an NR measurement model towards PSNR is not an appropriate approach in designing NR quality metrics. Furthermore, we propose a computational and memory efficient NR quality assessment model for JPEG images. Subjective test results are used to train the model, which achieves good quality prediction performance. A Matlab implementation of the proposed method is available at http://anchovy.ece.utexas.edu/~zwang/research/nr_jpeg_quality/index.html.