Approximate the integral of f(x) = cos(x) until εstep < 1e-10 or N = 10.
Please note, because we cannot begin at R(0, 0), each index will be off by one. This is not optimal code, either.
format long
eps_step = 1e-10;
N = 10;
R = zeros( N + 1, N + 1 );
a = 0;
b = 10;
h = b - a;
R(0 + 1, 0 + 1) = 0.5*(cos(a) + cos(b))*h;
for i = 1:N
h = h/2;
% This calculates the trapezoidal rule with intervals of width h
R( i + 1, 1 ) = 0.5*(cos(a) + 2*sum( cos( (a + h):h:(b - h) ) ) + cos(b))*h;
for j = 1:i
R(i + 1, j + 1) = (4^j*R(i + 1, j) - R(i, j))/(4^j - 1);
end
if abs( R(i + 1, i + 1) - R(i, i) ) < eps_step
break;
elseif i == N + 1
error( 'Romberg integration did not converge' );
end
end
R( i + 1, i + 1 )
The correct answer to 20 decimal digits is sin(10) = -0.54402111088936981340.
Copyright ©2005 by Douglas Wilhelm Harder. All rights reserved.


