Approximate the integral of f(x) = cos(x) until εstep < 1e-10 or N = 10.
Please note, because we cannot begin at R(0, 0), each index will be off by one. This is not optimal code, either.
format long eps_step = 1e-10; N = 10; R = zeros( N + 1, N + 1 ); a = 0; b = 10; h = b - a; R(0 + 1, 0 + 1) = 0.5*(cos(a) + cos(b))*h; for i = 1:N h = h/2; % This calculates the trapezoidal rule with intervals of width h R( i + 1, 1 ) = 0.5*(cos(a) + 2*sum( cos( (a + h):h:(b - h) ) ) + cos(b))*h; for j = 1:i R(i + 1, j + 1) = (4^j*R(i + 1, j) - R(i, j))/(4^j - 1); end if abs( R(i + 1, i + 1) - R(i, i) ) < eps_step break; elseif i == N + 1 error( 'Romberg integration did not converge' ); end end R( i + 1, i + 1 )
The correct answer to 20 decimal digits is sin(10) = -0.54402111088936981340.
Copyright ©2005 by Douglas Wilhelm Harder. All rights reserved.